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Partial differential equations (PDEs) are widely used in Computer Graphics fields

to model geometric objects, simulate natural phenomena, formulate physical laws

to develop realistic behavior of objects in the virtual world, and provide means to

measure features of movements, such as velocity, acceleration, the change of en-

ergy, etc. PDE techniques can be used for geometric modeling applications such

as surface fairing, shape reconstruction, geometric design, etc. However, there is a

lack of a systematic approach that can provide a set of comprehensive shape mod-

eling toolkits starting from shape design from sketches or reconstruction from

scattered datasets, to interactive sculpting as well as model simplification in a

single PDE framework. To make full use of the advantages of PDE techniques

for geometric modeling, this dissertation introduces a PDE-based modeling sys-

tem for geometric and physics-based modeling including shape design and direct
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manipulation, free-form deformation, object reconstruction, and medial axis or

skeleton extraction. In the system, objects can be defined as solutions of PDEs

with generalized boundary or initial conditions either in explicit parametric do-

main or implicit working space. The PDE modeling system employs two types

of PDEs, elliptic PDEs defining static geometric objects through boundary condi-

tions, and parabolic PDEs modeling dynamic objects via initial values. The func-

tionalities of the elliptic PDE model include 2D and 3D physics-based parametric

shape design and sculpting, interactive modeling for arbitrary polygonal meshes

or displacements, object reconstruction from arbitrary sketches or unorganized

scattered data, shape blending and direct manipulation of implicit PDE objects of

arbitrary topology, and free-form solid modeling and deformation with intensity

and physical properties. The parabolic PDEs are used for diffusion-based me-

dial axis extraction of geometric objects bounded by arbitrary polygonal meshes,

skeleton-based shape sculpting, and shape recovery through front propagation.

The PDE modeling system provides various interactive manipulation toolkits for

shape editing of the PDE-governed objects satisfying geometric continuities and

physical properties. After all, this dissertation offers a general and powerful PDE-

based geometric modeling framework toward realizing the full potential of the

PDE techniques as modeling and simulating tools in computer graphics.
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Chapter 1

Introduction

Partial Differential Equations, often known as PDEs, can be used to describe

the physical characteristics of objects and natural phenomena in the real world

using their differential properties. PDEs have been extensively employed in var-

ious visual computing applications, such as simulation, image processing, visu-

alization, computer vision, etc. On the other hand, geometric modeling tech-

niques are fundamental to many visual computing fields such as computer graph-

ics, CAD/CAM, animation, and virtual environments. Previous work indicates

that certain types of PDEs provide an alternative way to model geometric objects.

However, the full modeling potential of geometric PDE techniques has not been

realized. This dissertation aims at fully utilizing the advantages of geometric PDE

techniques and presents a prototype system for design, reconstruction, simplifica-

tion, and manipulation of geometric models in a single framework.

In general, modeling techniques to represent geometric objects fall into two

categories, explicit models and implicit models. Explicit models represent objects

by stating their precise positions, e.g., coordinates of points belonged to the ob-

jects and relations among them. Parametric models and subdivision models are

1



1. INTRODUCTION 2

among popular explicit representations. Parametric models define geometric ob-

jects through building the correspondence between the parametric domain (e.g.,

(u, v, w)) and physical space (e.g., (x, y, z)), such as free-form splines [20, 35,

54, 56, 111, 112], and parametric PDE techniques [12, 13, 15, 91, 160]. Subdi-

vision techniques directly model geometric objects through points, edges, as well

as faces of the objects. There are various subdivision schemes to model geometric

entities [26, 28, 36, 42, 52, 64, 66, 74, 77, 80, 86, 88, 89, 126, 133, 150, 163, 164].

Implicit models form the other category of geometric modeling techniques by

representing the geometric shapes as level-sets that collect points in the physical

space whose scalar value satisfies certain scalar field functions [9, 11, 23, 25, 29,

39, 37, 55, 61, 67, 99, 101, 110, 118, 120, 124, 145, 146, 153, 154, 162]. PDE

techniques, in contrast, employ partial differential equations to model geometric

shapes with boundary and initial conditions. They provide an alternative way of

geometric modeling by representing objects as solutions of certain PDEs which

can satisfy functional requirements and physical attributes automatically.

While each modeling approach exhibits certain advantages that make it use-

ful for particular applications, different method requires different representations

for geometric objects and focus on different modeling tasks respectively. Over-

all, none of these techniques is general enough to support interactive design and

manipulation of topologically complex objects under different types of shape rep-

resentations.

1.1 Problem Statement

PDE techniques are widely used in several visual computing areas, such as

fluid simulation [58, 59, 60, 53, 73, 156, 158], visualization and texture synthesis

[76, 143, 144, 155], and image processing[7, 109], etc. In addition, PDE methods
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offer an alternative but natural way to model geometric shapes, including both

explicit and implicit models. They define and govern geometric objects by certain

partial differential equations with given boundary/initial conditions.

In comparison with other graphical techniques, PDE methods have many at-

tractive advantages:

• Natural physical processes are frequently characterized by PDEs. In prin-

ciple, PDE models can be controlled by physical laws, so they are natural

and much closer to the real world. PDE techniques are potentially ideal

candidates for both design and analysis purposes.

• The formulation of differential equations is well-conditioned and techni-

cally sound. Smooth objects with high-order continuity requirements can

be readily defined through certain PDEs.

• Smooth objects that minimize certain energy functionals oftentimes are as-

sociated with differential equations, hence optimization techniques can be

unified with PDE models.

• Many powerful numerical techniques to solve PDEs are commercially avail-

able. Parallel algorithms can be employed for large-scale problems in in-

dustrial settings. Recently, the use of GPUs to solve PDEs provides even

faster solution and makes PDEs applicable for real-time applications.

• Users can easily understand the underlying physical process associated with

PDEs. Therefore, it is possible to implement intuitive and natural control

through the modification of physical parameters in PDE models.

• PDE techniques can potentially unify both geometric and physical aspects

of objects. They are invaluable throughout the entire modeling, design,
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analysis, and manufacturing processes. Various heterogeneous requirements

can be enforced and satisfied simultaneously.

When formulated as boundary value problems, PDEs can be used for free-

form surface modeling, shape blending, and functional surface design with given

boundary conditions [12, 13, 15, 91]. Furthermore, since the energy minimization

can be represented by certain PDEs, people also use PDE techniques or combine

PDE methods with other modeling techniques, such as subdivision models, to

generate fair surfaces with specified boundary constraints [123].

Although previous geometric PDE techniques have unique modeling advan-

tages such as small number of control coefficients and satisfying functional re-

quirements, they are lack of interactive and realistic sculpting and direct manip-

ulations for geometric models. The shape deformation can only be obtained by

changing boundary conditions and control coefficients for static PDEs. Such mod-

ifications only offer global control but cannot modify the shape locally. In previ-

ous work of geometric PDE modeling, only Hermite-like boundary constraints,

which consist of boundary information and their derivative values, are enforced to

define PDE objects. More flexible boundary conditions haven’t been considered

yet. This extremely limits the topological variety of geometric objects that can be

modeled by PDE techniques. Furthermore, pure geometric techniques are usually

non-intuitive and laborious for the sculpting and modeling of graphical objects.

The geometry only has static information and does not produce realistic behav-

ior for objects under interactive manipulations. It doesn’t provide dynamic and

interactive framework for time-dependent modeling requirements.

In summary, there are several modeling shortcomings that limit modeling ca-

pabilities of PDE techniques:

• Lack of direct and interactive manipulation for PDE objects
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The elliptic PDEs previously used for geometric models only solve bound-

ary value problems. The deformation and manipulation of PDE-governed

objects are often obtained by boundary sculpting and global modification of

control coefficients. There are lack of direct and interactive sculpting tools

for PDE objects.

• No arbitrary constraints for geometric PDE objects

In previous work of parametric PDE techniques, people mainly concentrate

on seeking for analytic solutions of elliptic PDEs. Although analytic solu-

tions are fast from performance point of view, they only take information

at objects’ boundaries to solve PDEs to obtain the geometry information of

objects. Hence shape deformation can be only obtained through boundary

manipulations and global control coefficients. The more desirable arbitrary

manipulations of any part of the objects cannot be enforced, which can be

achieved through numerical techniques for PDEs with ease.

• Lack of local control for regional shape sculpting

The PDEs employed in conventional geometric PDE techniques are usually

defined over the entire parametric domain and can model objects with global

features. According to the mathematical properties of the PDEs, any modi-

fication on PDE objects will propagate to the entire shape. Therefore, only

global control of objects can be achieved, but local shape modifications in

small bounded regional areas of objects haven’t been considered yet. This

limits the flexibility of PDE shape manipulation.

• No intuitive manipulation with physical properties

Geometric PDE techniques make use of static PDEs to model geometric

information of objects. Physical and material properties that contribute to
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objects’ realistic behavior are lacking from previous work. Therefore, real-

istic sculpting and real-time deformation couldn’t be achieved easily.

• Lack of direct manipulations for implicit PDE models

Although the level set method employs a time evolution PDE to model im-

plicit models through speed functions, manipulations through speed func-

tions are generally non-intuitive for common users. In addition, applying

manipulation tools directly on intensity scalar fields for implicit objects is

still under-explored.

• Limitations of acceptable shape representations for PDE models

In prior work, geometric PDE techniques often support limited types of

shape representations for objects to be modeled. They usually model ob-

jects of a single specific type of represnetations. There’s a lack of general

PDE modeling method which can model geometric entities of different pop-

ular shape structures in a single framework, including parametric objects,

arbitrary polygonal meshes, as well as implicit models.

• Lack of integration framework of different types of PDEs

Different PDEs have their own modeling strengths and limitations. A gen-

eral PDE modeling framework which can incorporate advantages of differ-

ent types of PDEs into a single system is still under-explored.

• Application limitations of geometric PDE modeling system

Previously, a PDE method is often focusing on certain specific tasks and

applications especially in geometric modeling. A PDE-based modeling sys-

tem with a comprehensive set of manipulation toolkits which can offer var-

ious modeling functionalities such as shape design, object reconstruction,
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model sculpting, shape deformation, as well as simplification of geometric

models associated with physical attributes in a single package hasn’t been

developed.

In general, it’s more desirable to have a unified PDE-based modeling frame-

work which can provide modeling capabilities of geometric objects of various

types of shape representations and offer powerful design and manipulation func-

tionalities for realistic and interactive control of objects.

1.2 Contributions

This dissertation mainly focuses on generalizing PDE techniques with inter-

active sculpting toolkits for various geometric tasks to maximize modeling poten-

tials of PDE techniques for geometric models. It presents a PDE-based mod-

eling system which integrates several types of PDEs with physics-based tech-

niques, shape skeletons, front propagations, and free-form deformation to model

objects of various types of shape representations including parametric models, ar-

bitrary polygonal meshes, displacement maps, and implicit functions in a single

framework. The system incorporates modeling advantages of these techniques

and shape representations to make PDE techniques more powerful and attractive

for geometric design and manipulation. It forms a general PDE-based modeling

paradigm which employs elliptic and parabolic PDEs with numerical techniques

for geometric and physics-based modeling and direct sculpting. The PDE-based

modeling system can design objects from arbitrary curve sketches, reconstruct

shape from unorganized scattered data points, interactively sculpt surfaces and

displacements with physical properties, extract diffusion-based medial axes or

skeletons of arbitrary polygonal meshes, manipulate and recover shapes using
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Figure 1.1: Contribution summary of the PDE-based modeling system.

skeleton-based techniques, model implicit objects with intuitive local operations,

as well as model solid objects by direct manipulation and free-form deformation

toolkits for both geometry and intensity attributes. The contribution of this disser-

tation is summarized in Fig. 1.1.

In particular, the contributions of this dissertation include:

• Intuitive manipulation of objects of different types of shape represen-

tations

It develops a prototype geometric design and modeling system using PDE

techniques and physics-based methods to model objects of different types

of shape representations including parametric surfaces and solids, arbitrary

polygonal meshes, and implicit models defined by scalar intensity fields.

The system provides powerful and intuitive sculpting toolkits which are

suitable for general users to manipulate geometric objects. It offers model-

ing advantages of both explicit and implicit models into a single geometric
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modeling framework.

• Unified design and modeling platform

The prototype system defines geometric (parametric or implicit) objects as

solutions of certain PDEs by given generalized boundary constraints in-

cluding curve networks, sketches, and unorganized scattered data points.

Moreover, by incorporating physical properties and material attributes with

geometric information of objects into the system, designers can intuitively

sculpt PDE objects by interactively modifying the shape and material prop-

erties of objects that enforces additional geometric and implicit constraints.

It offers users a natural way to design and deform geometric shapes.

• Realistic simulation of objects’ behavior with physical properties

This dissertation presents a unified approach to couple physics-based meth-

ods and parametric PDE surfaces and solids. The integrated physics-based

PDE model offers interactive sculpting of PDE objects with physical at-

tributes such as mass, damping, stiffness, density, and other material prop-

erties. The behavior of objects under direct manipulation is governed by the

integrated formulation. It provides more realistic motion simulation of real

world objects than previous pure geometric PDE models.

• Integrating implicit functions with parametric PDEs

It introduces a novel method which tightly couples parametric PDE tech-

niques with implicit functions for interactive shape design and manipulation

of PDE-based volumetric implicit models embedded in an implicit PDE

working space. The governing elliptic PDE provides high-order intensity

continuities inside the implicit objects without additional tedious specifica-

tions. It offers both direct and indirect manipulations of implicit objects for
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both global and local deformations. It also provides a solution for paramet-

ric PDE techniques to model objects of arbitrary topology. The integration

of parametric PDE and implicit intensity field provides both geometry and

intensity of the object simultaneously. It offers more degrees of freedom for

shape manipulation in geometric modeling applications.

• Defining geometric entities with small number of coefficients

Because objects are defined as solutions of certain type of PDEs with given

boundary constraints, the interior of objects can be automatically obtained

through their differential properties. This generalized PDE modeling tech-

nique is able to recover the full information of objects from partial input,

which elevates the burden of specifying the large quantity of constraints

for complete datasets. In addition, it also provides smooth deformation of

objects during manipulation and sculpting because of the properties of dif-

ferential equations.

• Diffusion-based medial axis manipulation for simplification and anima-

tion

The system also employs the diffusion-based equation for medial axis or

skeleton extraction as well as skeleton-based shape manipulation and re-

construction through front propagations. It offers an alternative but natu-

ral way for medial axis extraction for commonly used 3D objects bounded

by polygonal meshes. The skeleton-based shape manipulation provides a

fast and easy way for animation and deformation of complicated geomet-

ric objects. It further broadens applications of the PDE modeling system

and provides a geometric modeling paradigm which includes design, re-

construction, sculpting, and simplification for arbitrary topological shapes
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under various data structures.

More specifically, the PDE modeling system includes following components:

• Physics-based PDE surfaces and displacements (Chapter 4)

The PDE modeling system is able to model surfaces and surface displace-

ments using parametric PDE formulation with integrated physical properties

for direct manipulations on the surfaces[43, 44, 46]. It allows interactive

design of surfaces of flexible topology as PDE surfaces or PDE displace-

ments on the original surfaces using generalized boundary conditions as

well as a variety of geometric and physical constraints. The physics-based

parametric PDE supports various interactive techniques beyond the conven-

tional boundary control. The sculpting toolkits allow users to interactively

modify arbitrary point, curve span, and/or regions of interest across the en-

tire PDE surfaces/displacements in an intuitive and physically meaningful

way. To achieve real-time performance, this dissertation employs several

simple, yet efficient numerical techniques, including the finite-difference

discretization, the multi-grid subdivision, and the mass-spring approxima-

tion of elastic PDE surfaces/displacements. In addition, the dynamic PDE

surfaces/displacements can also be approximated using standard bivariate

B-spline finite elements, which can be subsequently sculpted and deformed

directly in real-time subject to intrinsic PDE constraints.

• Arbitrary topological PDE surface manipulations (Chapter 5)

However, traditional parametric PDE surface model can only model sur-

faces defined on regular parametric domain which cannot deal with arbitrary
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topological objects and extremely limit the modeling potential of PDE tech-

niques. Because a large number of existing models are represented by ar-

bitrary polygonal meshes, the PDE formulation is also considered to model

arbitrary meshes to further extend the modeling coverage of the PDE mod-

eling system. The PDE is formulated based on pre-defined mesh models

to govern shape deformation. The PDE modeling system provides manip-

ulation toolkits for interactive sculpting and facilitates data exchange with

other geometric modeling techniques.

• Diffusion-based medial axis extraction and skeleton-based manipula-

tion (Chapter 5)

Medial axes or skeletons are very useful in medical image processing and

analysis. They can also be used for animations of complicated objects. In

previous work, certain PDE formulations such as Hamilton-Jacobi equa-

tions can detect medial axes of 2D images and volumetric data with ease.

This dissertation expands the use of diffusion equations to detect medial

axes of arbitrary 3D objects represented by polygonal meshes based on

their differential properties. It offers an alternative but natural way for me-

dial axis extraction for commonly used 3D objects bounded by polygonal

meshes. By solving the PDE along the time axis, the system can not only

quickly extract diffusion-based medial axes of input meshes, but also allow

users to visualize the progressive extraction process at each time step. In

addition, diffusion equations not only can be used for medial axis extrac-

tion, but also provide a way to reconstruct objects from skeletons, which

enables the PDE model to provide users a set of manipulation toolkits for

skeleton-based shape deformation by sculpting extracted medial axes, then

using diffusion-based techniques to recover corresponding deformed shapes
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according to the original input datasets. This skeleton-based shape manipu-

lation offers a fast and easy way for animation and deformation of complex

objects.

• Shape modeling with implicit PDEs (Chapter 6)

Considering the modeling advantages of implicit functions, the PDE formu-

lation is further employed to model intensity fields which can reconstruct

and interactively manipulate implicit objects from scattered data points or

arbitrary sketches in 3D space. In particular, the unified approach can re-

construct the PDE geometry of arbitrary topology from scattered data points

or a set of sketch curves. Elliptic PDEs are used to define the volumetric

implicit function. The implicit PDE model has the capability to reconstruct

a complete model from partial information and facilitates the direct ma-

nipulation of underlying volumetric datasets via sketch curve manipulation,

iso-surface sculpting, deformation of arbitrary interior regions, CSG oper-

ations, and gradient and curvature manipulations inside the working space.

The prototype system allows designers to interactively sketch the curve out-

lines of the object, define intensity values and gradient directions, and spec-

ify interpolatory points in the 3D working space. The governing implicit

PDE treats these constraints as generalized boundary conditions to deter-

mine unknown scalar intensity values over the entire working space. The

implicit shape is reconstructed with specified intensity value accordingly

and can be deformed using a set of sculpting toolkits.

• PDE-based free-form modeling and deformation (Chapter 7)

A 3D parametric elliptic PDE forms a PDE-governed 3D space, which can
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be naturally applied for free-form deformation of geometric shapes. In ad-

dition, because of the 3D PDE space can be defined by boundary surfaces

surrounding the space, it provides a means of boundary representations of

solid objects. According to these modeling properties, this dissertation ex-

tends the PDE techniques to 3D parametric domain to model solid objects

with physical properties which constructs a mapping from 3D parametric

space to 3D physical space and provides PDE-based free-form deformation

of explicit objects defined in the 3D PDE parametric domian. The physics-

based PDE solid formulation and its associated dynamic principle permit

designers to model parametric PDE solids through free-form deformation

and direct manipulation. The behavior of a physics-based PDE solid is nat-

ural and intuitive subject to imposed constraints. Users can easily model

and interact with solids of complicated geometry and/or arbitrary topol-

ogy from locally-defined PDE primitives through trimming operations. The

PDE-based free-form solid modeling technique offers users various sculpt-

ing toolkits for solid design and manipulation, allows them to interactively

modify the physical and geometric properties of arbitrary regions of inter-

est on boundary surfaces, as well as any interior parts of modeled objects.

In addition, implicit properties such as intensity attributes are incorporated

into the PDE space. This integration can model geometry and intensity in-

formation of objects simultaneously. It provides a novel way for arbitrary

shape modeling, blending, and deformation. The PDE-based solid offers

not only a type of solid representation, but also more degrees of freedom

for object manipulations with intensity attributes.
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1.3 Dissertation Organization

The remainder of this dissertation is structured as follows. Chapter 2 gives a

brief introduction of PDEs and reviews the prior work of PDE-based techniques

and their applications. Chapter 3 reviews the related work of other popular tech-

niques such as spline-based models, implicit functions, physics-based methods,

medial axis extraction techniques, etc. Current work of this dissertation will be

detailed in the following chapters. Chapter 4 presents the novel techniques of the

direct manipulation of dynamic PDE surfaces and displacements with generalized

boundary constraints and flexible topology. Chapter 5 introduces the extended

PDE surface modeling scheme for manipulation of arbitrary topological mesh ob-

jects. It also presents diffusion-based medial axis extraction for objects bounded

by arbitrary polygonal meshes, and shows how to manipulate such objects using

skeleton-based sculpting and recover deformed shapes through diffusion-based

front propagation techniques. Chapter 6 details the modeling functionalities and

applications for implicit PDE objects. Chapter 7 introduces the sculpting toolkits

for PDE-based free-form modeling and deformation for solid objects with physi-

cal and scalar intensity attributes. Chapter 8 introduces several efficient numerical

methods to solve PDEs. The system structure of the prototype PDE system and

experimental results are presented in Chapter 9. Finally Chapter 10 concludes this

dissertation and outlines possible future research directions.



Chapter 2

Review of PDEs and Their

Applications

Partial differential equations (PDEs) are at the heart of many computer analy-

sis models or simulations of continuous physical systems, such as fluids, electro-

magnetic fields, the human body, and so on. Diffusion equation, wave equation,

Laplace’s equation, heat equation, as well as the equations of fluid dynamics, i.e.,

Navier-Stokes equations, are all popular used PDEs [159] to model and simulate

the physical world in visual environment. In addition, most of physics-based mod-

eling techniques and many CAD/CAM applications are related to certain PDEs.

PDE techniques are playing more and more important roles in the entire computer

graphics area in recent years. This chapter will briefly introduce typical PDEs

with classifications and their properties and applications in geometric modeling,

visualization, and simulation, etc.

16
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2.1 PDE Definition and Classifications

A partial differential equation (PDE) is an equation involving functions and

their partial derivatives. (2.1) shows an example of rth-order PDE over 2D para-

metric domain of u and v.
r∑

n=0

l+m=n∑
l,m≥0

αl,m(u, v)
∂n

∂ul∂vm
f(u, v) = g(u, v), (2.1)

where αl,m(u, v) and g(u, v) are control functions, and f(u, v) is the unknown

function of u and v.

In most books of mathematics, PDEs are classified into three categories, hy-

perbolic, parabolic, and elliptic, on the basis of their characteristics, or curves

of information propagation. Given a second-order PDE over 2D domain as an

example:

A
∂2x

∂x2
+ B

∂2u

∂y2
+ C

∂2u

∂x∂y
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu = G,

the classification works as follows:

When B2 − AC > 0, the PDE is of hyperbolic type, and the prototypical

example is the one-dimensional wave equation (e.g., for the coupled harmonic

oscillators):
∂2u

∂t2
= v2∂2u

∂x2
. (2.2)

When B2 − AC = 0, the PDE is of parabolic type, and the prototypical

equation is the diffusion equation (e.g., for heat or for ink):

∂u

∂t
=

∂

∂x
(D

∂u

∂x
), (2.3)

where D is the diffusion coefficient.

Finally, when B2−AC < 0, it’s an elliptic PDE and the prototypical equation

is the Poisson equation (e.g., for electric fields or for fluid flow):

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y), (2.4)



2. REVIEW OF PDES AND THEIR APPLICATIONS 18

Figure 2.1: Classification of PDEs based on Characteristics.

where the source term ρ is given. If the source term is equal to zero, the equation is

Laplace’s equation [113]. Fig. 2.1 shows typical examples of such classification

and some of their applications in computer graphics.

However, from a computational point of view, the above classification to dis-

tinguish PDEs into these three canonical types is not very meaningful – or at least

not as important as some other essential distinctions. There is another classifica-

tion to distinguish different types of PDEs, by the solution type of a PDE. If the

PDE can be solved by given information at some initial time t0, then the solution is

propagating forward in time, it’s called initial value or Cauchy problem, and leads

to a time evolution solution. The above mentioned wave equation and diffusion

equation are usually this type of PDEs. In contrast, the Poisson equation directs us

to find a single ”static” function u(x, y) which satisfies the equation within some

(x, y) region of interest, and which has some desired behavior on the boundary of

the region. This type of problems are called boundary value problems and can be
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(a) (b)

Figure 2.2: The illustration of another type of PDE classification. (a) Initial value

problems; (b) boundary value problems.

PDE Classifications Elliptic Hyperbolic Parabolic

Boundary Value Laplace’s Equation N/A N/A

Initial Value N/A Wave Equation Diffusion Equation

Table 2.1: Illustration of the relations between the two types of PDE classifica-

tions.

used for geometric design. Fig. 2.2 illustrates the distinction between these two

classes of problems. In Fig. 2.2 (a), initial values are given in one time slice, and

it is desired to advance the solution in time, computing successive rows of open

dots in the direction shown by the arrows. Boundary conditions are shown at the

left and right edges of each row. On the other hand, boundary values in Fig. 2.2

(b) are specified around the edge of the grid’s boundaries, and the solution is to

find the values of all internal points. However, in many occasions, a PDE problem

cannot be simply distinguished as of boundary-value or initial-value type, but as

a combination of these types of problems.

Table 2.1 summarizes typical PDEs of these two types of classifications.
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2.2 PDEs for Geometric Modeling

Elliptic PDEs are often used to model static boundary problems in geometric

modeling. In 1989, Bloor and Wilson [12, 13] pioneered a novel technique that

defines smooth surfaces as solutions of elliptic PDEs. Since the initial applica-

tion for surface blending, this PDE technique has broadened its uses in surface

description, solid modeling, and functional design in recent years.

2.2.1 PDE Surfaces

In principle, the PDE-based method proposed by Bloor and Wilson is a bound-

ary value problem using an elliptic PDE, which has the property that most of the

information defining a surface comes from its boundary curves. This permits a

smooth surface to be generated and controlled by very few parameters such as

boundary conditions and global coefficients associated with the elliptic PDE. The

following equation is the fourth-order elliptic PDE introduced in [13] for PDE

surfaces:

(
∂2

∂u2
+ a2 ∂2

∂v2
)2X(u, v) = 0 (2.5)

where u, v are parametric coordinates over 2D space, a is a blending coefficient

that controls the behavior of PDE surfaces along parametric directions, and

X(u, v) =
[

x(u, v) y(u, v) z(u, v)
]�

defines the PDE surface coordinates in 3D.

(2.5) is based on biharmonic equation ∇4φ = 0. The reason to choose the

elliptic PDE to model surfaces is because that such equations give smooth solu-

tions subject to boundary conditions. The required boundary conditions to find

the solution are usually given in terms of the specified variation of the function
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and/or its normal derivatives along edges of the parametric domain over which

the solution is to be found, i.e., Hermite-like boundary conditions, which define

the boundaries of the surface.

The four boundary conditions in their work are Hermite-like boundary condi-

tions and comprise two curves which define a pair of the curved surface bound-

aries at the opposite side along u-direction and a pair of their associated derivative

curves defining gradient information at the two boundaries. They are of the fol-

lowing form:

X(0, v) = c0(v),X(1, v) = c1(v),

∂X
∂u

(0, v) = d0(v), ∂X
∂u

(1, v) = d1(v).
(2.6)

This PDE formulation can be used to solve blending problems in CAD/CAM

[12, 13], because the above boundary conditions contain position and gradient

information of the boundaries and the fourth-order PDE provides tangential con-

tinuities inside blending parts.

(a) (b)

Figure 2.3: The PDE surface with Hermite-like boundary conditions. (a) B-spline

boundary conditions with control points; (b) the surface subject to (a).

Later on, Bloor and Wilson [15] extended the application of this PDE tech-

nique to generate piecewise free-form surfaces. By varying boundary conditions

and control coefficients in PDEs, as well as connecting several PDE patches to-

gether, designers can obtain various surface shapes. Fig. 2.3 shows an example of
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such PDE surfaces. The control of PDE surfaces is different from conventional

methods, and it offers the advantage by defining the surface in terms of a smaller

number of variables.

Bloor and Wilson [14] have also developed an algorithm that approximates

PDE surfaces using standard B-splines by the method of collocation. They use

boundary conditions to solve control points of B-spline approximations, then use

them to obtain approximate solutions of PDE surfaces. This work demonstrates

that PDE surfaces are virtually compatible with other matured and well estab-

lished spline-based techniques for surface design, hence PDE surface data can be

readily incorporated into existing commercial design systems.

Furthermore, Lowe, Bloor and Wilson [91] presented a method with which

certain engineering design criteria such as functional constraints can be incorpo-

rated into the geometric design of PDE surfaces. Therefore, it may simultaneously

introduce geometric constraints, aesthetic criteria, and physical and engineering

restrictions into the design process. This method of surface generation is suitable

for the problem of optimum design.

For certain simple boundary conditions, the elliptic PDEs can be solved an-

alytically, i.e., PDE surfaces in these cases have a closed-form formulation that

frequently involves functions of Fourier series. However, for general boundary

conditions, a PDE solution will have to be sought numerically instead. Bloor and

Wilson [17] have derived a set of approximate analytic solutions for PDEs subject

to more general boundary conditions. The approximate solution can be made to

approach the true solution up to any degree of accuracy. Their generic solutions

can be decomposed into a finite sum of Fourier functions satisfying PDEs with an

additional ’corrector’ term that satisfies boundary conditions.

In 1999, Ugail et al.[148] have developed some techniques for interactively

defining and changing boundary conditions to construct PDE surfaces. We [43,
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44] have integrated physics-based techniques with static PDE surfaces and de-

veloped a set of interactive and direct manipulation toolkits for dynamic PDE

surfaces. Later on, we [46] further extended the PDE technique to model surface

displacements for more general surface manipulations.

2.2.2 PDE Solids

In 1993, PDE solids were formulated in terms of parametric bounding surfaces

by Bloor and Wilson [16], which further expands the geometric coverage of PDE

methodology. Different from the traditional solid modeling methods like Con-

structive Solid Geometry (CSG) and Boundary representation (B-rep) [65, 100],

the PDE method allows both of the shape and solid properties to be attached to an

object, which can meet certain functional criteria. Here is the formulation of the

second-order elliptic PDE to model solids:

(a2 ∂2

∂u2
+ b2 ∂2

∂v2
+ c2 ∂2

∂w2
)X(u, v, w) = 0 (2.7)

where u, v, and w are parametric coordinates in 3D space.

To solve this PDE, six boundary surfaces are required for a unique solution.

The boundary surfaces are of following forms:

X(0, v, w) = U0(v, w),X(1, v, w) = U1(v, w),

X(u, 0, w) = V0(u,w),X(u, 1, w) = V1(u,w),

X(u, v, 0) = W0(u, v),X(u, v, 1) = W1(u, v).

(2.8)

We further incorporated the solid PDE formulation into the PDE modeling

system to offer PDE-based free-form deformation and direct manipulation of solid

objects [45]. We [48] also integrated the PDE solid with implicit properties for

general free-form PDE modeling applications.
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Figure 2.4: Construct 3D solids from parametric space using PDE method.

2.2.3 Generating Fair Meshes

Variational constrained optimization problems have been widely used in sur-

face modeling [151, 157], physics-based modeling of deformable surfaces [27,

140], and subdivision models [77, 80, 152]. In variational subdivision models,

with choosing appropriate functionals to be minimized iteratively during the re-

finement of a subdivision surface, the limit surface of high smoothness can be

constructed efficiently. Because the common used minimization functionals in

variational design (e.g., curvature minimization functional, energy minimization

functional) can be characterized in the form of PDEs, the variational modeling is

closely related to PDE techniques, and sometimes variational optimization prob-

lems can be transformed to certain PDE problems.

Schneider and Kobbelt [123] presented an algorithm to create fair discrete sur-

faces satisfying prescribed G1 boundary constraints by discretizing a PDE based

on pure geometric intrinsics. The algorithm can construct surfaces of high aes-

thetic quality that have no local mean curvature extrema in the interior.
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A common method for surface fairness is to minimize fairness functionals

based on geometric invariants, such as curvature minimization functionals. Be-

cause the computation time is enormous for such method, people usually give

up the parametric independence and approximate the geometric invariants with

higher order derivatives, which can result in the construction of a solution by

solving a linear system. A representant of this category is the thin plate energy:∫ ∫
f 2

xx + 2f 2
xy + f 2

yydxdy

which can be used to create surfaces satisfying C1 boundary conditions.

Instead of minimizing a functional, another approach first applies variational

calculus to transform the minimization problem into the problem of solving a

differential equation with constraints. Even without using variational calculus,

the PDE approach can solve the fairing problem itself, which is useful for fairing

based on geometric invariants. The PDE used to solve the fairing problem is

∆BH = 0 (2.9)

where ∆B is the Laplace-Beltrami operator, which extends the planar Laplacian

to a smooth surface.

This algorithm can be used to solve the N-sided-hole problem and other blend-

ing problem in many fields of CAGD. Fig. 2.5 shows an example of this method.

The construction of fair surfaces from irregularly triangulated data which re-

moves the rough features can also make use of variational methods. Desbrun et

al.[38] developed an algorithm to remove the undesirable noise and uneven edges

from imperfectly-measured data from the real world while retaining desirable ge-

ometric features. They used an implicit integration of the diffusion equation as

well as the curvature flow for the smoothing of meshes.

Variational approach can find applications in shape transformation and in-

terpolation. Turk and O’Brien [146] presented a shape transformation method
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(a) (b) (c)

Figure 2.5: Example of variational surface fairing: the classical house corner

problem. Image courtesy of Schneider and Kobbelt [123].

using variational implicit functions for N-dimensional objects. It unified the im-

plicit function creation and interpolation into one single step and provided smooth

and natural shape transformations even between objects with different topologies.

Later on, they proposed a variational implicit method for shape interpolation[147].

2.3 Level Set Method

2.3.1 Level Set Formulation

The level set method was introduced by Osher and Sethian [108] to track mov-

ing interfaces in a wide variety of problems. The original idea behind the level set

method is as follows: Given an interface Γ in n-dimensional space Rn, bounding

a (perhaps multiply connected) open region Ω, the goal is to analyze and compute

its subsequent motion under a velocity field v. This velocity can depend on posi-

tion, time, the geometry of the interface (e.g., its normal or its mean curvature) and

the external physics. The level set method relies on the relation between propa-

gating interfaces and propagating shocks. The equation for a front that propagates

with curvature dependent speed is linked to a viscous hyperbolic conservation law

for the propagating gradients of the front. The idea is to define a smooth func-

tion φ(x, t), whose zero-level set φ(x, t) = 0 represents the propagating interface.
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Here x = (x1, · · · , xn) ∈ Rn. The level set function φ has the following proper-

ties:
φ(x, t) > 0 for x ∈ Ω,

φ(x, t) < 0 for x /∈ Ω,

φ(x, t) = 0 for x ∈ ∂Ω = Γ(t).

The motion for this evolving function φ is determined from a PDE in one higher

dimension which permits cusps, sharp corners, and changes in topology in the

zero-level set describing the interface.

The level set approach works as follows: suppose one wishes to follow the

evolution of a curve Γ0 as it propagates in a direction normal to itself with speed

F . Then the family of moving curves Γt can be matched with a family of moving

surfaces in such a way that the zero-level sets always yield the moving front. All

that remains is to find an equation of motion for the evolving surface.

Let Γ0 be a closed, non-intersecting curve. Assume φ(x, t), x ∈ Rn, is a scalar

function such that at time t the zero-level set of φ(x, t) is the curve Γt, and further

assume φ(x, 0) = ±d(x), where d(x) is the distance from x to the curve Γ0. The

plus sign is used if x is inside Γ0 and the minus sign for x outside. Let each level

set of φ flow along its gradient field ∇φ with speed F . Then φ can be computed

by solving the differential equation

φt − F |∇φ| = 0

φ(x, t = 0) = ±d(x).
(2.10)

At any time, the moving front Γt is the zero-level set of φ.

If F depends on the curvature, the curvature may be expressed in terms of φ

by

F =
φyyφ

2
x − 2φxφyφxy + φxxφ

2
y

(φ2
x + φ2

y)
3/2

.

This is called an Eulerian formulation for front propagation, because it is written

in terms of a fixed coordinate system in the physical domain. There are three
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advantages to such an approach. First, since the underlying coordinate system

is fixed, discrete mesh points do not move and the stability problems that plague

the Lagrangian approximations may be avoided. Second, topological changes

are handled naturally, since the zero-level set of φ needs not be simply connected.

Third, the above formulation can be easily extended to moving surfaces in 3D with

appropriate expressions for the curvature (such as mean or Gaussian curvature).

The above initial value PDE may be approximated using spatial and temporal

derivatives on a fixed grid.

Since its introduction, the level set approach has been used to compute and

analyze a broad array of physical and mathematical phenomena, including prob-

lems in compressible/incompressible flow, flow having singular vorticity, Stefan

problems, kinetic crystal growth, combustion, shape recognition, minimal surface

generation, etc. In recent years, PDEs and level set motion are also explored in im-

age analysis and computer vision. One basic idea is to view an image as u0(x, y),

a function defined on a square, and obtain a (usually second-order) flow equation

of the form
ut = F (u,Du,D2u, x, t)

u(x, y, 0) = u0(x, y),
(2.11)

which, for positive t, processes the image. For example, if one solves the heat

equation with

F (u,Du,D2u, x, t) = ∇2u,

then u(x, y, t) is the same as convolution of u0 with a Gaussian of variance t.

2.3.2 Shape Reconstruction Using Level Set Method

Using level set method, the problem of reconstructing shapes from scattered

datasets can be easily solved. Zhao et al.[162] used the level set method as a
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(a) (b)

Figure 2.6: Examples of shape reconstruction using level set method. Image cour-

tesy of Zhao et al.[162].

numerical technique to evolve the implicit surface continuously following the gra-

dient descent of the energy functional for the shape reconstruction from scattered

points. Fig. 2.6 shows an example.

2.3.3 Level Set Method for Shape Morphing

Level set method can also be used for shape transformation (morphing) [23]

which uses a volume-based technique formulating the blending state of the mor-

phing process as the optimization, via a hill-climbing strategy, of a similarity mea-

sure between the deforming surface and the target, utilizing level set models for

the incremental shape changes. Refer to Fig. 2.7 for an example.

Comprehensive reviews of the level set approach may be found in [1, 22, 127].

The generality of this approach makes it very attractive, especially for problems

in three dimensions, problems with sensitive dependence on curvature (such as

surface tension problems), and problems with complex changes of topology.



2. REVIEW OF PDES AND THEIR APPLICATIONS 30

Figure 2.7: Using level set method for shape morphing. Image courtesy of Breen

and Whitaker [23].

2.4 Diffusion Equations

Diffusion equations are another popular type of PDEs which have applications

in texture synthesis, image processing, surface fairing, and visualization.

A Diffusion equation is defined as a PDE describing the variation in space and

time of a physical quantity which is governed by diffusion. It provides a good

mathematical model for the variation of temperature through heat conduction and
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electromagnetic wave propagation in a highly conducting medium. The diffu-

sion equation is a parabolic PDE whose characteristic form relates the first partial

derivative of a field u with respect to time t to its second partial derivatives with

respect to spatial coordinates x:

∂u

∂t
= κ∇2u, (2.12)

where u = u(x, t),x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn, t ≥ 0, and κ is called the

diffusion coefficient. The operator ∇2 =
∑

i
∂2

∂x2
i

is called the Laplacian. When κ

is not constant, but depends on spatial coordinates: κ = κ(x), this spatial variation

leads to anisotropic diffusion equation:

∂u

∂t
= ∇ · (κ∇u). (2.13)

The solutions of diffusion equations are subject to both initial and bound-

ary conditions. Numerical solutions of diffusion equations usually refer to the

finite-difference method, which uses Forward Time Centered Space (FTCS) finite-

difference approximation for diffusion equations. Using such equations, people

can develop visually convincing models of fire, smoke, and other gaseous phe-

nomena. Diffusion equations can also be used in scientific visualization of medi-

cal images.

2.4.1 Depicting Gaseous Phenomena Using Diffusion Processes

In 1995, Stam and Fiume [135] discussed using diffusion processes to de-

velop models of fire, smoke, and other gaseous phenomena, especially models of

”wispy” smoke and steam. They created new methods of animating a wide range

of gaseous phenomena using far fewer primitives than before. They gave the refor-

mulation and solution of the advection-diffusion equation for densities composed
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of ”warped blobs”. These blobs model the distortion that gases undergo when

advected by wind fields more accurately. They also introduced a simple model for

the flame of fire and its spread.

2.4.2 Reaction-Diffusion Systems for Texture Synthesis

The PDE techniques can be used to synthesizing nature textures with the

consideration of reaction-diffusion (RD) systems, which give rises to nonlinear

PDEs. The RD mechanism was first proposed by Turing [143] to account for the

pattern formation in biological morphogenesis. Starting with Turing’s work, in

1991, Witkin and Kass [155] presented a method to generate textures based on

the simulation of RD system. They generalized the basic RD model by introduc-

ing anisotropic and space-varying diffusion. The addition of anisotropy allows

the creation of zebra stripes, and sand ripples. With allowing diffusion rates and

directions to vary over space, they created more complex patterns, including the

swirling patterns typical of fingerprints. They also considered the functions, which

allow multiple competing orientations at each point, to create patterns of a strik-

ing woven or lattice-like appearance. The use of non-standard initial conditions or

reaction-diffusion parameters can model giraffe markings. Fig. 2.8 shows several

texture patterns generated by Witkin and Kass [155].

2.4.3 Visualizing Vector Field

Vector field visualization is an important topic in scientific visualization. It

aims to graphically represent field data on two and three-dimensional domains and

on surfaces in an intuitively understandable way. The anisotropic nonlinear diffu-

sion can be used in flow visualization [114]. Diewald et al.[41] proposed a new

approach based on anisotropic nonlinear diffusion for vector field visualization. It
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Figure 2.8: Texture buttons generated by reaction diffusion system. Image cour-

tesy of Witkin and Kass [155].

enables an easy perception of vector field data and serves as an appropriate scale

space method for the visualization of complicated flow patterns. The approach is

closely related to nonlinear diffusion methods in image analysis where images are

smoothed while still retaining and enhancing edges. Here, an initial noisy image

intensity is smoothed along integral lines, whereas the image is sharpened in the

orthogonal direction. The method is based on a continuous model and requires

the solution of a parabolic PDE problem. Applications are shown for flow fields

in 2D and 3D, as well as for principal directions of curvature on general trian-

gulated surfaces. Furthermore, the provisions for flow segmentation are outlined.

An example for visualizing the principle curvature directions is shown in Fig. 2.9.
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Figure 2.9: Visualizing principal curvature directions. Different time steps of

the anisotropic diffusion are displayed on the surface of a pre-smoothed Stanford

bunny. In addition, the corresponding principle curvature values are color coded.

Image courtesy of Diewald et al.[41].

2.4.4 Tensor Field Visualization for MRI Data

Kindlmann et al.[76] also employed diffusion textures to help visualizing

tensor field of the magnetic resonance imaging (MRI) brain together with other

visualization tools. Diffusion-weighted MRI is capable of elucidating the fibrous

structure of certain types of tissue, such as the white matter within the brain. One

tool for interpreting this data is volume rendering because it permits the visualiza-

tion of three dimensional structure without a prior segmentation process. In order

to use volume rendering, they developed three methods for assigning opacity and

color to the data, and create a method to shade the data to improve the legibility

of the rendering including barycentric opacity maps, hue-balls (for color), and lit-

tensors (for shading). They also proposed anisotropic reaction-diffusion volume

textures as an additional tool for visualizing the structure of diffusion data. The

patterns generated by this process can be visualized on their own or they can be

used to supplement the volume rendering strategies. Fig. 2.10 shows an example

of mapping the diffusion texture on the brain data.
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(a) (b)

Figure 2.10: Texture-mapping with reaction-diffusion texture.(a) Segmented tex-

ture; (b) texture mapped onto surface rendering. Image courtesy of Kindlmann et

al.[76].

2.5 Other Applications of PDE Techniques

PDE techniques also have various applications in other computer graphics re-

lated areas such as animation, simulation, image processing, etc.

2.5.1 Animation and Simulation

Modeling Fracture

PDEs can be used along with physics-based techniques to graphically model

and animate the realistic behavior of materials that can undergo fracture due to

deformation-induced stress [105, 104, 106]. O’Brien and Hodgins proposed an

approach based on linear elastic fracture mechanics and non-linear finite-element

analysis to model three-dimensional volumes using a mesh of tetrahedral elements

and simulate the fracture of the volumes under stresses. With this approach, it’s

possible to automatically generate realistic synthetic motion for three-dimensional

solid objects that can break, crack, or tear. They employed a fast, tetrahedral

finite-element method that uses linear shape functions within the elements. They
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accommodated arbitrary propagation directions by dynamically reconstruct the

mesh. Because cracks are not limited to the original element boundaries, objects

can form irregularly shaped shards and edges as they shatter. To model the defor-

mation of the material which will cause fractures, a set of differential equations

that describe the aggregate behavior of the material were defined in a continuous

form based on continuum mechanics, and then these equations were discretized

using finite-element method for computer simulation. Fig. 2.11 is one example of

shattered Stanford Bunny model.

(a) (b) (c)

Figure 2.11: Example of modeling fracture. Image courtesy of O’Brien [104].

Fluid Dynamics

Fluid dynamics can be viewed as another type of PDE applications, because

the equations governing the behavior of fluid are also a type of PDEs. Using

the fluid dynamics mechanics, with different physical material properties as ini-

tial/boundary conditions, people can simulate water, gas, smoke, explosion, and

so on. There are many contributions in simulating fluid materials using such tech-

niques.

The most popular PDEs to model the fluid flow are Navier-Stokes Equations.

A fluid whose density and temperature are nearly constant can be described by

a velocity field u and a pressure field p. These quantities generally vary both in
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space and in time and depend on the boundaries surrounding the fluid. Given that

velocity and pressure are known for some initial time t = 0, then the evolution of

these quantities over time is given by Navier-Stokes equations [134]:

∇ · u = 0 (a)

∂u
∂t

= −(u · ∇)u − 1
ρ
∇p + v∇2u + f , (b)

(2.14)

where v is the kinematic viscosity of the fluid, ρ is its density and f is an ex-

ternal force. The symbol ∇ is the vector of spatial partial derivatives. More

precisely, ∇ = (∂/∂x, ∂/∂y) in two-dimensions and ∇ = (∂/∂x, ∂/∂y, ∂/∂z)

in three-dimensions. Navier-Stokes equations are obtained by imposing that fluid

conserves both mass (part (a)) and momentum (part (b)). These equations also

have to be supplemented with boundary conditions. There are many derivations

of Navier-Stokes equations, which lead to simulations of different dynamic fluids,

such as hot turbulent gas by Foster and Metaxas [60], the stable fluid by Stam

[134], animated explosions by Yngve et al.[158], etc.

Gas Simulation In 1997, Foster and Metaxas [60] proposed an animation tech-

nique to model the turbulent rotational motion that occurs when a hot gas inter-

acts with solid objects and the surrounding medium. The method is especially

useful for scenes involving swirling steam, rolling or billowing smoke, and gust-

ing wind. It can also model gas motion due to fans and heat convection. The

method combines specialized forms of equations of motion of a hot gas with an

efficient method for solving volumetric differential equations at low resolutions.

It’s a physics-based model specifically designed to realistically animate the com-

plex rotational component to gaseous motion, effects due to regions of different

temperature within a gas, and the interaction between gas and other objects. The

model accounts for convection, turbulence, vorticity and thermal buoyancy, and

can also accurately model gas flowing around complex objects such as hot steam
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being vented into a boiler room or the rolling smoke cloud from an explosion.

Fig. 2.12 is an example of this model.

(a) (b) (c)

Figure 2.12: An example of turbulent smoke rolls out of a chimney into a light,

gusting wind. Image courtesy of Foster and Metaxas [60].

Stam [134] improved the work of Foster and Metaxas by a simple and stable

algorithm to solve the full Navier-Stokes equations with larger time steps. The

improved model allows users to interact in real-time with three dimensional flu-

ids on a graphics workstation. Both Lagrangian and implicit methods are used

instead of the explicit Eulerian schemes to solve Navier-Stokes equations. It can

be applied to simulate gaseous-like phenomena.

Water Simulation Kass and Miller [73] proposed a CFD simulation technique

based on an approximation of the shallow water equations. These equations sim-

plify Navier-Stokes equations by making certain assumptions and approximations

according to the property of shallow water. They used a height field to represent

the water’s surface. The equation is transformed to a tridiagonal linear system on

a uniform finite-difference grid, which can be solved by iterative methods. This

model can handle wave reflections, net transport of water and boundary conditions

with changing topology. It’s suitable to animate flowing rivers, raindrops hitting

surfaces and waves in a fish tank as well as waves lapping on a beach.
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Foster and Metaxas [58] presented a realistic and stable simulation method

to animate the liquid motion using finite-difference approximation to the incom-

pressible Navier-Stokes equations. The model incorporates Lagrange equations of

motion coupled by the pressure field to simulate the dynamic behavior of buoyant

rigid objects. It can be used to simulate the wave effects of refraction, reflection

and diffraction, as well as rotational motion (e.g., vorticity). The fluid surface is

represented as either a chain of massless marker particles or a height field. The

liquid sources or sinks and time dependent pressure field (such as strong wind)

can be included in the simulated environment. Later on, the authors [59] provided

an embedded controller as an interface between the animator and a general tool

for calculating three dimensional fluid flow for controlling fluid animations. It al-

lows computer graphics animators to specify and control a three dimensional fluid

animation without knowing the underlying equations.

Explosion Animation Explosions are one sort of the most dramatic phenom-

ena in nature. According to [158], an explosion is born when a sudden burst of

energy from a mechanical, chemical, or nuclear source causes a pressure wave

to propagate outward throughout the air. An explosion can cause a variety of vi-

sual effects in addition to the light refraction by the blast wave, such as blinding

flash of light, dust clouds, hot gases and smokes, and so on. Yngve et al.[158]

presented a physics-based model of explosions and simulated many of the above

mentioned effects. They modeled the explosion post-denotation as compressible,

viscous flow, and solve the flow equations with an integrated method that handles

the extreme shocks and supersonic velocities inherent in explosions. They used

a fluid dynamics model of the air to capture many of the visual effects. In their

model, in addition to Navier-Stokes equations for conservation of momentum,

they also used governing equations for the conservation of mass and energy and
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for the fluid’s thermodynamic state. Fig. 2.13 are some examples of the simulated

explosions by [158].

(a) (b) (c)

Figure 2.13: Examples of Explosion Simulation. (a) An image of a projectile

propelled from a chamber by an explosion: on the right is a cross-section of three-

dimensional fluid volume using a color map where hotter colors indicate higher

densities; (b) a glass window is shattered by a blast wave; (c) a simulated fireball.

Image courtesy of Yngve et al.[158].

(a) (b)

Figure 2.14: Examples of Image Inpainting. (a) Original image; (b) result image

of (a). Image courtesy of Bertalmio et al.[7].

2.5.2 Image Processing

Image inpainting represents the technique to modify images in an undetectable

way. The applications of this technique include the recovery of damaged pictures,
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removing of selected area in the images, and so on. Because gradient informa-

tion of images, especially the information around the boundary of the image part

of interests, which can be modeled by certain PDEs, is extremely helpful in the

”inpainting” process, the PDE model may also be employed for image inpainting.

Bertalmio et al.[7] presented a method to fulfill the inpainting job using informa-

tion of the surrounding area of the selected region. In particular, they considered

the boundary ∂Ω of the selected area Ω to be inpainted, then smoothly propagated

information from the surrounding areas in the isophotes direction using certain

partial differential equations of gradient vectors. Fig. 2.14 gives an example of

using such method to restore pictures.

Recently, Pérez et al.[109] introduced a method using Poisson equations to

provide a variety of novel tools for seamless editing of image regions. The first set

of tools permits the seamless importation of both opaque and transparent source

image regions into a destination region. The second set is based on similar math-

ematical ideas and allows the user to modify the image appearance seamlessly,

within a selected region. These changes can be arranged to affect the texture, the

illumination, and the color of objects lying in the region.



Chapter 3

Related Work of Other Modeling

Techniques

The PDE-based modeling framework presented in this dissertation is not only

developed based on previous work of PDE modeling techniques, but also related to

several other popular geometric modeling techniques, such as spline-based shape

representations, implicit functions, physics-based interactive models, and medial

axis extraction techniques.

3.1 Spline-based Shape Representations

Free-form splines can be viewed as one of the most popular shape modeling

techniques which use piecewise polynomials with certain constraints of differen-

tiability to represent geometric objects such as curves, surfaces, and solids. They

can describe not only standard analytic shapes (lines, conics, circles, planes, etc.),

but also free-form objects, and they also provide extra degrees of freedom for

42
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the shape manipulation. Some of the spline-based techniques can limit the de-

formation within specified local regions without affecting the global shape when

manipulating the geometric objects. This feature of local control is often desirable

for shape design.

Among the wide variety of spline families, non-uniform rational B-splines

(NURBS) have gained the most popularity and become an industrial standard for

geometric design. This section will introduce the NURBS formulation and ap-

plications as an example for the spline-based techniques. There are two major

ingredients of NURBS, rational and B-splines.

A B-spline curve is a piecewise polynomial curve [20]:

s(u) =
∑

i

PiN
n
i (u). (3.1)

Pi’s are control points and Nn
i (u)’s are B-spline basis functions which are piece-

wise polynomials of degree n recursively defined over the knots sequence U =

u0, u1, . . ., where u0 ≤ u1 ≤ . . .:

N r
i (u) =




1, if r = 0 and u ∈ [ui, ui+1);

0, if r = 0 and u �∈ [ui, ui+1);

(u − ui)
Nr−1

i (u)

ui+r−ui
+ (ui+r+1 − u)

Nr−1
i+1 (u)

ur+i+1−ui+1
, r > 0

(3.2)

The basis functions have several important properties, such as they are non-

negative, the sum of all the basis functions of same order is 1, and they provide

local support, etc.

The product of B-spline basis functions Nn
i (u)’s and Mm

j (v)’s of given knots

ui, vj provides the representation of a B-spline surface:

X(u, v) =
∑

i

∑
j

Pi,jM
m
j (v)Nn

i (u), (3.3)

where Pi,j are control vertices forming a control mesh.
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A NURBS curve is a vector-valued piecewise rational polynomial function of

the form [111]:

C(u) =

∑n
i=0 wiPiN

p
i (u)∑n

i=0 wiN
p
i (u)

, (3.4)

where wi are weights and Pi’s are control points. Np
i (u)’s are B-spline basis

functions of degree p over the non-uniform knots vector U = u0, u1, ..., um. The

relationship of the degree, number of knots, and number of control points are

defined by the formula m = n + p + 1. For non-uniform and non-periodic B-

splines, the knot vector takes the form:

U = α, ..., α, up+1, ..., um−p−1, β, ..., β

where the end knots α and β are repeated with multiplicity p+1. In most practical

applications α = 0 and β = 1. With the above defined knots vector, the NURBS

curve of(3.4) interpolates the endpoints and is tangential at the endpoints to the

first and last legs of the control polygon.

A NURBS surface is the rational generalization of the tensor-product non-

rational B-spline surface defined as follows:

S(u, v) =

∑n
i=0

∑m
j=0 wi,jPi,jN

p
i (u)N q

j (v)∑n
i=0

∑m
j=0 wi,jN

p
i (u)N q

j (v)
(3.5)

where wi,j’s are the weights, Pi,j’s form a control net, and Np
i (u)’s and N q

j (v)’s

are B-spline basis functions in the u and v directions, respectively, defined over

the knot vectors

U = 0, ..., 0, up+1, ..., ur−p−1, 1, ..., 1,

V = 0, ..., 0, vq+1, ..., vs−q−1, 1, ..., 1,

where the end knots are repeated with multiplicities p + 1 and q + 1, respectively,

and r = n + p + 1 and s = m + q + 1.
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The NURBS are popular and widely accepted in the CAD/CAM and graph-

ics community because of various properties [111]. NURBS offer a common

mathematical form for representing and designing both standard analytic shapes

and free-form curves and surfaces. By manipulating control points and weights,

NURBS provide the flexibility to design a large variety of shapes. NURBS have

clear geometric interpretations, making them particularly useful for designers,

who have a very good knowledge of geometry, especially descriptive geometry.

They have a set of powerful geometric toolkits (e.g., knot insertion, refinement, or

removal, degree elevation, splitting, etc.) to design, analyze, process, and interro-

gate objects. NURBS are invariant under scaling, rotation, translation and shear

as well as parallel and perspective projection. They are genuine generalizations

of non-rational B-spline forms as well as rational and non-rational Bezier curves

and surfaces.

However, at the same time, NURBS have several drawbacks [111]. They re-

quire extra storage to define traditional curves and surfaces. Improper application

of weights can result in a very bad parameterization, which may destroy sub-

sequent surface constructions. Some interrogation techniques work better with

traditional forms than with NURBS, e.g., surface/surface intersection, where it

is particularly difficult to handle the just touch or overlap cases. Fundamental

algorithms, such as inverse point mapping, are subject to numerical instability.

Furthermore, spline-based techniques are less natural and non-intuitive, primar-

ily because free-form splines are oftentimes associated with tedious and indirect

shape manipulation through time-consuming operations on a large number of con-

trol vertices, non-unity weights, and/or non-uniform knots. Users need strong

mathematical sophistication to deal with such techniques. Usually spline-based

techniques are restrained to model regular shapes. It is difficult to extend their

geometric coverage to shapes of arbitrary topology without resorting to various
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non-intuitive geometric constraints.

3.2 Implicit Models

Without specification of precise locations of geometric entities as explicit

models, implicit functions offer a different type of shape representations by using

certain scalar field functions to define geometric objects as level-sets of specific

intensity values. A general form of implicit function to represent a surface has the

following form:

f(x, y, z) = c, (3.6)

where f(x, y, z) is a scalar function over the physical domain of x, y, z, and c is a

constant scalar value. Similarly, an implicit solid can be represented by

{(x, y, z)|f(x, y, z) ≤ c}, (3.7)

where f(x, y, z) = c defines the boundary surface of the solid.

The implicit representations offer designing, modeling, and interacting with

3D geometric entities in the x, y, z domain directly. In the past several years,

implicit functions have been widely developed as a powerful design and manip-

ulation tool for graphical models. They offer a totally different yet convenient

and natural design and modeling paradigm (compared with parametric represen-

tations) in visual computing fields such as graphics, animation, and geometric

design. This is because of their unique properties such as arbitrary topology, col-

lision detection, free of parametric correspondence, etc. In general, every rational

parametric entity can be modeled by certain implicit functions, which implies that

the set of implicit objects is larger than that of rational parametric shapes.
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3.2.1 Particle-based Implicit Surface Sculpting

In 1994, Witkin and Heckbert [154] introduced an approach using particles

to sample and control implicit surfaces. They used a simple constraint that locked

a collection of particles onto an implicit surface as control points for the surface.

The constraint was used to make the surface follow the particles, or to make the

particles follow the surface. They implemented control points for direct manipu-

lation by specifying particle motions, then solving for surface motion that main-

tains the constraint. They specified and solved for velocities rather than positions,

and the behavior of the system was governed by differential equations that inte-

grate these velocities over time. For sampling and rendering, they created floater

particles that roamed freely over the surface. Local repulsion was used to make

floaters spread evenly across the surface. By varying the radius of repulsion adap-

tively, and fissioning or killing particles based on the local density, good sampling

distributions can be obtained very rapidly, and maintained in rapid and extreme

deformations and changes in surface topology.

3.2.2 Trivariate B-splines for Implicit Models

Raviv and Elber [118] presented an interactive sculpting technique using the

zero level-set of scalar trivariate B-spline functions to represent 3D objects. Users

can indirectly sculpt an object by modifying relevant scalar control coefficients

of the underlying B-spline functions. Like all tensor product B-spline functions,

the trivariate functions have a control volume that consists of scalar coefficients,

Pi,j,k ∈ R. The trivariate functions are of the form:

f(u, v, w) =
l−1∑
i=0

m−1∑
j=0

n−1∑
k=0

Pi,j,kBi(u)Bj(v)Bk(w), (3.8)
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where Bi(u), Bj(v), Bk(w) are the uniform B-spline basis functions, Pi,j,k’s are

scalar coefficients in a volumetric mesh of size l × m × n, and f(u, v, w) is a

scalar function. Sculpting is conducted by modifying values of scalar coefficients

of the implicit trivariate functions. Arbitrarily accurate constant iso-surfaces are

approximated by adaptive sampling of the exact free-form trivariate function, at

some prescribed resolution, and by computing a polygonal approximation model

of the sculpted shape via the Marching Cube algorithm [90].

Later on, Hua and Qin [69, 70] developed interactive solid sculpting toolkits

with haptics on implicit B-spline solids defined through the use of B-spline control

coefficients over the intensity field.

3.2.3 Level Set Method for Implicit Functions

Zhao et al. [162] proposed a weighted minimal surface model based on varia-

tional formulations and PDE techniques to construct a surface from scattered data.

They used the level set method as a numerical technique to evolve the implicit sur-

face continuously following the gradient descent of the energy functional for the

final reconstruction. Their level set model is governed by a time evolution PDE

with velocity at the level sets given by the motion law of the original surface. The

level set method is based on a continuous formulation using PDEs and deforms

an implicit surface according to various laws of motion depending on geometry,

external forces, or certain energy minimization. It can easily handle topological

changes and reduce noises in the dataset. Their level set method mainly focuses on

implicit objects reconstructed from scattered datasets. Problems for interpolating

curve sketches, especially open curve sketches haven’t been addressed. Cutler et

al.[33] presented a procedural framework for specifying layered solid models and

applying a series of simulation operations as sculpting tools described by a script
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language to the models which can be tedious for complex models. Bærentzen and

Christensen [5] developed an interactive volume sculpting method using the level

set method which offers smoothing/un-smoothing, adding/removing blob, and di-

lating/eroding tools for volumetric implicit models. Museth et al.[102] proposed

level-set-based editors using CSG operations, blending, embossing, and smooth-

ing for implicit surfaces. However, these tools are associated with the specification

of speed functions for the evolving level set, which are non-intuitive for common

users.

3.2.4 Variational Implicit Functions

Implicit functions can also be used for shape reconstruction and 3D morphing

process. Turk and O’Brien [146] made uses of variational implicit functions to

achieve shape morphing and surface reconstruction. They employed the Radial

Basis Function (RBF) method to construct an implicit function that interpolates

the given dataset and minimizes the thin-plate energy. Morse et al.[99] proposed

using compactly supported RBFs to interpolate implicit surfaces from scattered

surface data. Turk and O’Brien [147] provided a variational interpolation ap-

proach for interactive implicit surface sculpting via particles, but each operation

requires reformatting and recalculation of the entire system, which is difficult to

model large datasets. Fig. 3.1 shows an reconstruction example.

Despite the modeling advantages of implicit functions, systematic modeling

toolkits for direct manipulation of implicit surfaces and solids are still under ex-

plored.
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Figure 3.1: A polygonal surface (left) and the interpolating implicit surface de-

fined by the vertices and their normals (right). Image courtesy of Turk and

O’Brien [147].

3.3 Physics-based Modeling

The pure geometric methods such as spline-based techniques only consider ge-

ometric attributes of objects, which means they require indirect and non-intuitive

manipulations to obtain desired shapes. In general, such modeling process is time-

consuming and not interactive.

Physics-based modeling, which takes the physical attributes and material prop-

erties of objects into account and makes use of physical principles during the

modeling process, offers users a way to overcome the drawback of indirect pure

geometric design mechanism. It can incorporate the external forces, mass, damp-

ing, time, and constraints into a dynamic framework to produce smooth, natural,

intuitive motions of objects. The physics-based modeling also provides direct

and interactive manipulation tools for both professional experts and naive users.

It augments (instead of replaces) the well-established geometric modeling tech-

niques with aforementioned features, which makes the physics-based modeling

more powerful for modeling and design processes.
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A well-known physics-based modeling technique is the free-form deformable

model introduced by Terzopoulos et al.[140]. The physics-based model is gov-

erned by the mechanical laws of continuous bodies which can be expressed in the

form of dynamic differential equations. The dynamic and realistic behavior can

be obtained by solving an associated motion equation numerically. The physics-

based method can be used to interactively model and manipulate various objects

dynamically. Terzopoulos et al.[138, 139, 140] demonstrated interactive sculpt-

ing using viscoelastic and plastic models. Celniker and Gossard [27] developed

a prototype system for interactive free-form design based on the finite-element

optimization of energy functions proposed by Terzopoulos and Fleischer [138].

3.3.1 Deformable Models

A deformable model is characterized by the position, velocity, and accelera-

tion along with material properties such as mass and damping distributions. The

equation governing the dynamic motion of a deformable model can be written in

Lagrange’s form [140] as follows:

∂

∂t
(µ

∂r

∂t
) + γ

∂r

∂t
+

δε(r)

δr
= f(r, t), (3.9)

where r(a, t) is the position of the particle a at time t, µ(a) is the mass density

of the body at a, γ(a) is the damping density, and f(r, t) represents externally

applied forces. ε(r) is a functional which measures the net instantaneous potential

energy of the elastic deformation of the body.

The external forces are balanced against the force terms on the left-hand side

of (3.9) due to the deformable model. The first term is the internal force due

to the model’s distributed mass. The second term is the damping force due to

dissipation. The third term is the elastic force due to the deformation of the model
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away from its natural shape. Then the potential energy of deformation for elastic

models can be used as the measure of the deformation. With applying external

forces to elastic models, users can achieve realistic dynamics, thus simplify the

animation of complex objects.

To achieve real-time sculpting and direct manipulation, a continuous dynamic

model can be discretized into a collection of mass points connected by a network

of springs across the neighbors (and/or along both diagonals). Other springs can

be incorporated into the discretized model if certain types of dynamic behavior is

more desirable. Hence, a set of second-order differential equations is obtained to

govern the physical behavior of the underlying physics-based model:

Mp̈ + Dṗ + Kp = f , (3.10)

where p is the position vector of the collection of sample points on the discretized

mesh, M is a mass matrix, D is a damping matrix, K is a stiffness matrix, and the

force at every mass point in the mesh is the sum of all possible external forces:

f =
∑

fext.

The deformable model then can be solved by numerical approaches such as

the finite-difference method and the finite-element method.

3.3.2 Applications of Physics-based Techniques

One intriguing advantage of physics-based models is that they can be inte-

grated with other geometric modeling techniques such as NURBS and subdivi-

sion methods for realistic shape manipulations with material properties. Dynamic



3. RELATED WORK OF OTHER MODELING TECHNIQUES 53

NURBS, or D-NURBS [116, 117, 141], are physics-based models that incorpo-

rate mass distributions, internal deformation energies, and other physical quanti-

ties into the NURBS geometric representation. Using D-NURBS, users can in-

teractively sculpt curves and surfaces and design complex shapes according to

required specifications not only in the traditional indirect fashion, by adjusting

control points and weights, but also through direct physical manipulation, by ap-

plying simulated forces and local and global shape constraints. D-NURBS move

and deform in a physically intuitive manner in response to users’ direct manipu-

lations. Their dynamic behavior results from the numerical integration of a set of

nonlinear differential equations that automatically evolve the control points and

weights in response to the applied forces and constraints. Lagrangian mechanics

are employed to formulate the equations of motion for D-NURBS models.

Physics-based model can also be integrated with subdivision techniques to

provide the benefits of both subdivision methods for modeling arbitrary topolog-

ical objects and those of dynamic models for direct and interactive shape manip-

ulation by applying synthesized forces. Qin et al.[115] introduced a dynamic

Catmull-Clark subdivision model in 1998. Mandal et al.[94] further generalized

this model to any subdivision scheme. Such techniques can also find applica-

tions in dynamic sculpting, data fitting, and engineering design. Fundamentally,

their work is an extension of D-NURBS to surfaces of arbitrary topology. They

attached physical parameters and behaviors to Catmull-Clark, Loop, and Butter-

fly subdivision surfaces by employing different types of finite elements. For each

type of subdivision algorithm, they derived different blending functions since each

type of model converges to a different type of surface in the limit. The dynamic

behavior is governed by the Lagrangian equation of motion and is integrated nu-

merically through an implicit solver. McDonnell and Qin [96, 97] then extended

the dynamic subdivision techniques to solid geometry, which makes the dynamic
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framework of subdivision models even more powerful for shape design and ma-

nipulation. They proposed a framework for representing, manipulating, and in-

teracting with 3D virtual solid objects of arbitrary topology. The model is an

integration of the solid, subdivision, and physics-based modeling paradigms.

The physics-based techniques can be used to simulate the animation of cloth

materials, such as flags, tablecloths, scarves, carpets, clothing, etc. In 1992, Carig-

nan et al.[24] developed a method to animate clothes on synthetic actors in motion

using physics-based models. They created many individual cloth panels, attached

physical properties to the cloth, then either seamed the cloth elements together or

attached them to solid objects (e.g., an actor) and animated the cloths according to

the motion of the actor in a physical environment. The cloth animation was per-

formed with the internal elastic force and the external forces of gravity, wind, and

collision response to make it more realistic. Baraff and Witkin [6] proposed a fast

algorithm for cloth simulation with the choice of an implicit integration method.

They modeled the cloth as a triangular mesh, with internal cloth forces derived

from local stretching forces, compressing forces, as well as damping forces. The

implicit method provided the stable simulation with large time steps.

Physics-based models also find applications of facial simulation, because the

consideration of physical properties will generate more realistic facial models.

Lee et al.[85] presented a physics-based approach constructing functional models

of the human face based on laser-scanned range and reflectance data which were

suitable for animation. They estimated the skull structure and inserted the major

muscles for facial expressions into the dynamic facial model. The synthetic facial

model consisted of five distinct layers which cover the skull and are connected by

springs. Moreover, an articulated neck and synthesized subsidiary organs, such

as eyes, eyelids, and teeth, were included to improve the reality of the facial an-

imation. However, this model didn’t consider the personal face tissue properties,
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which was generally important for facial surgical simulation. With the incorpo-

ration of individual facial data when constructing a facial model, Koch et al.[81]

described a prototype system for surgical planning and prediction of human facial

shape after craniofacial and maxillofacial surgery for patients with facial defor-

mities. They modeled the facial data using triangular non-linear finite elements

and connected the surface with nodal springs to the skull. The individual spring

stiffness parameters were computed from the underlying CT data. The resulting

shape was then generated from minimizing the global energy of the surface under

external forces. The system also considered boundary conditions, stretching and

bending forces, as well as nodal loading forces to accomplish facial simulations.

There are many other applications for physics-based modeling including pro-

viding dynamic deformations for superquadrics [98], using physics-based model

to simulate artificial life (e.g., fishes) [142], simulating facial surgery using physics-

based models [81, 85], simulating clothes with physics-based modeling tech-

niques [6], directly manipulating physics-based B-spline surfaces using haptics

[34], etc. Physics-based methods can even be applied to implicit functions for

realistic manipulation of implicit objects. For example, Hua and Qin [70] re-

cently proposed an integrated approach to couple the physics-based methods with

implicit B-spline functions. In general, the physics-based techniques can be in-

corporated into conventional geometric modeling framework for more realistic

manipulations of geometric entities.

Because physics-based models are formulated through differential equations,

it’s straightforward to integrate them with PDE techniques. This dissertation has

unified the physics-based techniques with PDE surface and solid models to obtain

interactive sculpting of PDE objects.
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3.4 Medial Axis Extraction Techinques

Figure 3.2: 2D illustration for medial axis.

Medial axis, also known as skeleton, offers much more simple and compact

representations for arbitrary complex geometric and/or solid objects. Ever since

it was first proposed and named by Blum [18, 19], medial axis has started to gain

more and more popularity in visual computing areas especially in recent years. It

collectively provides useful shape information such as topology, orientation, and

local properties in an intuitive and compact fashion. For instance, the medial axis

of a 2D polygon can be directly associated with the concept of grassfire transform:

by igniting boundary points of the polygon, the fire propagates inward from the

boundary at a uniform speed, and where the fire front meets and extinguishes

itself defines the medial axis in a natural and physically plausible way. More

mathematically, the medial axis can be defined as the locus of all centers of circles

inside the 2D polygon (or spheres inside the 3D object) that are tangent to the

boundary in two or more places [21]. The points on the medial axis (or skeleton)

of an object usually have more than one closest point on the boundary of the

object. Fig. 3.2 shows an illustration of the medial axis for a 2D shape. In

practice, medial axis is also called medial surface and frequently referred as the
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3D skeleton (especially in bio-medical applications) for 3D models. Hence the

extraction of medial axis is oftentimes called skeletonization.

There are several unique advantages of using medial axis or skeleton to model

geometric objects. First, it provides localization of features such as anatomical

landmarks (which are extremely valuable in bio-medical applications). Second,

it separates thickness information (e.g., radius of medial axis or skeleton) from

orientational and topological information, i.e., shape features can be subdivided

into radial, orientational and location information in order to facilitate statistical

analysis. Third, shape differences between objects can be quantified in a more

intuitive and accurate way. Fourth, it is more expeditious to capture coarse-scale

changes from the acquired models, making it more stable and robust to handle

noisy datasets.

In the past several decades, medial axis extraction has been well studied and

there are various techniques for detecting medial axes of 2D and 3D objects. Brief

reviews of several typical approaches computing medial axes or skeletons are

listed as follows:

• Thinning

To extract medial axis of an object, one intuitive way is to peel off the ob-

ject’s boundary layer by layer. Such thinning process can be performed

iteratively in the discrete domain. It will retain points on skeletons and

maintain object’s topology [3, 84, 95]. However, thinning-based methods

are fundamentally discrete processes and require fully segmented, compact,

and connected objects. These techniques have difficulties to deal with par-

tial data and are sensitive to Euclidean transformations of the data.

• Distance functions
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Because the skeletal or medial surface points usually coincides with the sin-

gularities of an Euclidean distance function to the boundary, distance func-

tions can be employed for medial axis extraction. The approaches based on

distance functions construct distance field transformation of an object and

extract the medial axis based on the distance field [4, 8, 57, 63, 87]. How-

ever, usually it’s difficult to ensure homotopy with original objects using

techniques based on distance functions.

• Voronoi skeletons

Because the vertices of the Voronoi diagram of a set of boundary points can

converge to the skeleton as the sampling rate increases under appropriate

smoothness conditions [122], Voronoi diagram and its dual Delaunay tri-

angulation have been widely adopted for medial axis extraction [2, 40, 62,

103, 107, 128, 130, 129]. Such methods can preserve topology and accu-

rately localize skeletal or medial surface points for densely sampled object.

However, for algorithms based on Voronoi diagrams, it’s more time con-

suming to build a 3D Voronoi diagram with increasing number of sample

points, thus, direct computing method for Voronoi skeletons is less suitable

for large datasets.

• Level set method

Another class of methods casts the surface as the level set of a 4D embedded

object and finds the weak solutions of a PDE which models the wave prop-

agation process whose singularities yield the medial axis. Kimmel et al.

[75] introduced a level-set-based method for skeletonization using numeri-

cal approximation of distance maps of an object. Ma et al. [92] proposed

a practical approach for extracting skeletons from general 3D models using
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radial basis functions (RBFs).

• Direction testing

Bloomenthal and Lim [10] proposed an implicit method based on direction

testing that defines the skeleton as the set of points at which the direction to

the nearest point on the object undergoes a sudden transition. The geometric

skeleton is derived from a static object using an implicit direction method.

The object may be reconstructed from the modified skeleton using implicit

distance and convolution techniques.

• Hybrid techniques

In addition, many skeletonization techniques combine several aforemen-

tioned methods into a single framework for medial axis extraction. For

instance, Siddiqi et al. [21] proposed a method combining the thinning pro-

cess and the distance transformations and using a Hamilton-Jacobi equation

to calculate medial axes of volume data. This method provides accurate me-

dial axis extractions and preserves homotopy of objects. However, it mainly

focuses on volumetric datasets. Medial axis extraction for arbitrary objects

bounded by polygonal meshes hasn’t been considered. And sometimes the

real medial axis for an irregular complex model may have noisy branches

which are difficult to handle in the interest of shape manipulation.

To make use of the appealing features of medial axes in the PDE-based mod-

eling system, this dissertation employs a diffusion-based equation to approxi-

mate skeletons of objects bounded by arbitrary meshes (or other boundary rep-

resentations). It also provides sculpting toolkits to manipulate skeletons and uses

diffusion-based front propagation techniques to recover deformed objects accord-

ing to skeleton deformations.



Chapter 4

Physics-based PDE Surfaces

PDE surfaces, which are defined as solutions of certain PDEs, offer many

modeling advantages in surface blending, free-form surface modeling, and speci-

fying surface’s aesthetic or functional requirements. This dissertation presents an

integrated approach that can unify static PDE surfaces with physics-based mod-

eling method and spline-based techniques, in order to realize the full potential

of PDE methodology. It provides PDE surface manipulation toolkits that allow

interactive design of flexible topological surfaces as PDE surfaces and displace-

ments using generalized boundary conditions as well as a variety of geometric and

physical constraints, hence supporting various interactive techniques beyond the

conventional boundary control. This work has been published in the proceedings

of EuroGraphics 2000 [43] and Pacific Graphics 2000[44], and accepted by the

Journal of Graphical Models[46].

60
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4.1 Introduction and Motivation

Surface modeling techniques are fundamental for many visual computing ap-

plications including interactive graphics, CAD/CAM, animation, and virtual en-

vironments. There are various geometric techniques to model surfaces including

spline-based methods, subdivision models, implicit functions, etc. Different with

aforementioned techniques, PDE techniques offer a unique surface representation

that defines surfaces as solutions of elliptic bivariate PDEs of 3D coordinate vec-

tors with provided boundary conditions. The interior information of the surfaces

can be automatically recovered using given boundary information, which allevi-

ates the burden of specifying tedious control points or other means to define a

surface object. Because of differential properties of the underlying PDE, the con-

structed surface has high-order continuities throughout the parametric domain.

Moreover, the underlying PDE often relates to certain energy functionals to offer

optimization properties. However, despite the rapid advances and modeling suc-

cesses of PDE surfaces, there are lack of a set of novel interactive techniques to

realize their full potential. Typical modeling difficulties associated with traditional

PDE surfaces include:

1. The prior work on PDE surfaces mainly concentrated on static elliptic PDEs

and is lack of interactive techniques for direct shape manipulation.

2. Besides simple geometric conditions along PDE surface boundaries, as well

as manually editing on PDE coefficients, there is a lack of formal mecha-

nism to directly manipulate PDE surfaces in general.

3. Traditional elliptic PDE surfaces only result from Hermite-like boundary

conditions (i.e., boundary curves and their corresponding derivatives up to

order n at one parametric direction). More flexible and general boundary
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constraints are not yet addressed.

4. Conventional PDE surface techniques are unable to support localized geo-

metric operations. Global control is less intuitive to manipulate.

To ameliorate it, we [43] proposed an interactive method and developed novel

modeling techniques that can facilitate the direct manipulation and interactive

sculpting of dynamic PDE surfaces. The presented algorithms and design frame-

work are founded upon the integrated principle of differential equations and physics-

based modeling. To further promote the applicability of PDE surfaces in interac-

tive graphics, CAD/CAM, and virtual engineering, we [44] extended both the geo-

metric coverage and topological variation of PDE surfaces. The improved system

provides users a set of more powerful sculpting tools than previously-developed

point-based editing capabilities. These toolkits allow PDE surfaces to be defined

through the use of general, flexible boundary constraints. PDE surfaces of com-

plicated geometry and diverse types of topology are available in the PDE-based

modeling environment. Other typical design tools in the environment include

merging multiple surfaces, trimming surface parts, manipulations of isoparamet-

ric curves and/or arbitrary curve networks, editing any user-specified sub-surface,

local modification of blending coefficients, etc. The PDE modeling system also

offers B-spline approximation and sculpting to facilitate the data exchange with

other geometric modeling techniques. Through the system, users are able to en-

force both physical requirements and geometric criteria on PDE surfaces simulta-

neously with ease. To further extend PDE techniques for manipulation of existing

models, the PDE formulation is employed to model displacements on paramet-

ric surfaces [46]. The displacement model defines surfaces as original surfaces

plus PDE-governed displacements and surface deformation can be achieved by

manipulating surface displacements through interactive toolkits. This extension
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allows users to directly model existing parametric surfaces through the system. It

facilitates data exchange of PDE techniques with other parametric models.

4.2 Formulation of PDE Surfaces

The fourth-order elliptic PDE to model PDE surfaces in the PDE modeling

system is a generalized version of (2.5) by replacing the constant control coeffi-

cient a with an arbitrary function a(u, v) in the interest of local control:

(
∂2

∂u2
+ a2(u, v)

∂2

∂v2
)2X(u, v) = 0 (4.1)

where u, v are parametric coordinates over the 2D parametric domain, a(u, v) is

a blending coefficient function of u and v that controls the contributions of partial

derivatives along u and v directions locally, and

X(u, v) =
[

x(u, v) y(u, v) z(u, v)
]�

defines the PDE surface coordinates in 3D space. Note that, in (2.5) the control

coefficient is a constant a. To offer users more flexibility for interactive manip-

ulation, this constant coefficient is replaced by an arbitrary function of u and v,

which can be defined by users. Because a(u, v) varies across entire PDE surface

X(u, v), local control on PDE surfaces can be achieved. Moreover, although the

system focuses on this particular elliptic PDE, the mathematical derivation and

its associated numerical techniques can be readily generalized to other PDEs. To

solve (4.1), at least four boundary conditions are required in order to derive a

unique solution. The PDE modeling system assumes that a PDE surface is either

closed or open geometrically along its two parametric directions (i.e., u and v).

Therefore, PDE surfaces may be topologically flexible, yielding diverse types of

surfaces equivalent to four-sided open patches, spheres, cylinders, and tori. u and



4. PHYSICS-BASED PDE SURFACES 64

v can be restained to vary between 0 and 1, because reparameterization process

can be easily conducted without changing the geometry of PDE surfaces if either

u or v belongs to any [a, b]. Boundary conditions to define a PDE surface can be

classified into three types: (1) open along both u and v directions, (2) open along

u direction and closed along v direction, and (3) closed along both directions. In

addition to the traditional Hermite-like boundary constraints, to enhance the cross-

sectional design of PDE surfaces from a set of curves, the boundary conditions are

generalized to a curve network. For instance, consider the design techniques of

Gordon surface and Coons patch, the generalized boundary constraints can have

the following form:

X(ui, v) = fi(v),X(u, vj) = gj(u), (4.2)

where 0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1, and fi(v) and gi(u) are isoparametric

curves. Moreover, a set of non-isoparametric curves can be easily added into our

formulation.

By interactively modifying generalized boundary constraints, users are capa-

ble of manipulating the entire surface in an indirect manner. This property offers

designers an efficient way to edit the PDE surface through a fewer number of

parameters that define boundary curves.

4.3 PDE-based Displacement Surfaces

The idea of displacing a surface by a function was introduced by Cook [30].

Displacement maps are often used for texture mapping of bumped surfaces or

modeling of complex detailed meshes of arbitrary topology with regular surface
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(a) (b)

Figure 4.1: Illustration of the idea of displacement model. (a) Displacement curve

model based on the displacements along the original curve normals; (b) displace-

ment curve model based on the displacement vectors on the original curve.

patches. The complex surface can be represented as scalar/vector-valued displace-

ments over a smooth domain surface. The displacement maps can be viewed as

images, and this type of representation facilitates the use of image processing

operators for manipulating the geometric detail of an object. They are also com-

patible with modern photo-realistic rendering system [82]. The idea is also used in

subdivision techniques to produce displaced subdivision surfaces [83] and multi-

resolution surfaces [78]. Displacement maps can decrease the complexity of the

model. The advantage of this representation lies in its simplicity and flexibility.

The natural hierarchical division between coarse and fine features allows rapid

computation of local surface features, and makes the data structure ideal for rapid

collision detection for interactive operations. Furthermore, since local features

can be represented by an array of scalar values, limited editing of the local geom-

etry can be done rapidly by modifying the values in the displacement map [72].

An illustration of the idea of displacement models is shown in Fig.4.1.

To further explore the modeling potentials of PDE techniques on existing sur-

face models, this dissertation employs the PDE formulation on surface displace-

ments, i.e., the offsets of the input surface. The target surface will be the result by

adding the corresponding displacements onto the original surface. Different with
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popular displacement techniques, the proposed PDE method will model displace-

ment vector maps of the surface instead of the scalar-valued map associated with

surface normals and leave the underlying surface unchanged. The formulation of

PDE displacement model is a slightly modified version of (4.1):

X(u, v) = X0(u, v) + O(u, v),

( ∂2

∂u2 + a2(u, v) ∂2

∂v2 )
2O(u, v) = 0,

(4.3)

where X(u, v) is the target surface, X0(u, v) is the original surface, and O(u, v)

is the corresponding surface displacements. Note that, (4.1) is the simplest case

of (4.3) by simplifying the original surface to X0(u, v) = 0, i.e., shrinking to a

point at the coordinate origin.

4.4 Numerical Approximation Techniques

Prior work on PDE surfaces mainly seeks closed-form analytic solutions in or-

der to exploit many attractive properties associated with analytic formulations for

surface design. However, in the interest of allowing arbitrary boundary conditions

and direct surface manipulations, this dissertation resorts to numerical techniques

that guarantee approximate solutions of the integrated formulation for PDE sur-

faces of flexible topology. Numerical algorithms also facilitate the material mod-

eling of anisotropic distribution and its realistic physical simulation, where there

are no closed-form analytic solutions available for PDE surfaces. Among many

mature techniques, two popular numerical approaches are employed for the PDE

surface modeling framework: (1) finite-difference discretization, and (2) finite-

element method based on B-spline approximation.

The finite-difference method (FDM) is to transform a PDE into a system of

algebraic equations by sampling the parametric domain into regular grids, then re-

placing all the partial derivatives in the differential equation with their discretized
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approximations on the sample points. The algebraic equations can then be solved

numerically either through an iterative process or a direct procedure in order to ob-

tain an approximate discrete solution to the continuous PDE. The details of FDM

techniques will be discussed in Chapter 8. By substituting the finite-difference

representation at each grid point, (4.1) can be rewritten in matrix form as:

HX = z, (4.4)

where H represents the discretized differential operator in (m × n) × (m × n)

matrix form. H is also controlled by the blending function a(u, v). X is the

collection of the unknown position vectors of the discretized sample points on the

PDE surface, and z depends on the value of the boundary constraints.

H =
[
H(0,0),H(0,1), · · · ,H(m−1,n−1)

]�
,

H(i,j) =
[
H(i,j),(0,0), H(i,j),(0,1), · · · , H(i,j),(m−1,n−1)

]
,

X =
[
x(0,0),x(0,1), · · · ,x(m−1,n−1)

]�
,

z =
[
z(0,0), z(0,1), · · · , z(m−1,n−1)

]�
.

The matrix H is called ”tridiagonal with fringes” [113].

Similarly, the PDE for displacements in (4.3) can be discretized using finite-

difference method in the form of

HO = z.

Thus, (4.3) has the approximate numerical form

X = X0 + O,

HO = z.
(4.5)

Different topological types are available of PDE surfaces. First, the surface

can be closed along one parameter direction (e.g., v), in which case the points on

v = 0 are the same as those on v = 1. The central-difference scheme suffices
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for the computation of partial derivatives with respect to v. Second, the PDE sur-

face is open along both u and v directions. In this case, the computation of partial

derivatives on two boundary curves requires special care, and forward or backward

differences shall be utilized along the open boundary curves instead. Third, the

PDE surface is closed along both directions, and the central-difference approxima-

tion can be applied anywhere across the surface geometry. Boundary constraints

determine all the point coordinates lying on the user-specified curves. Moreover,

for the Hermite-like boundary conditions, the initial derivative information across

boundary curves determines additional point coordinates in the vicinity of spec-

ified boundaries (e.g., x1,j and xm−2,j) that are adjacent to two boundary curves

at u = 0 (x0,j) and u = 1 (xm−1,j). Arbitrary boundary conditions can be eas-

ily enforced without any difficulty using finite-difference method. Note that, in

spite of certain combinations of constraint imposition shown in the examples, in

general this type of elliptic PDEs allows the boundary conditions to be explicitly

formulated in arbitrary form. This permits designers to choose (various) con-

straints based on diverse design tasks. The same flexible topological feature also

applies to PDE displacements. However, the topological type of displacements

depends on the underlying original surface. This gives designers more freedom

when modeling surfaces of flexible topology.

With the boundary conditions, (4.4) can be solved using direct methods like

Gaussian-Elimination or finite-difference-based iterative techniques such as Gauss-

Seidel iteration or SOR iteration. Nonetheless, the discretization of the parametric

space results in a very large number of linear equations. This causes the slow con-

vergence of iterative methods. To achieve a solution faster, the equations can be

solved first at a coarse grid with down-sampled constraints and interpolate the so-

lution at finer grids to compute the initial guess for iterative methods at the finer

resolution. The convergent rate of this multi-grid iterative solver can be greatly
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increased.

4.5 Combining Physics-based Modeling

The physics-based modeling methodology can be unified with PDE approach,

mainly because the dynamic behavior of physics-based models is also controlled

by certain differential equations (e.g., Lagrangian equations of motion). Hence,

physics-based modeling augments (rather than replaces) the existing PDE method-

ology, offering extra advantages for shape modeling. Since the majority of phys-

ical phenomena can be characterized by PDEs, and the physical laws employed

by the physics-based modeling are in the format of certain differential equations,

it is natural to view the physics-based modeling as a member of the general PDE

modeling and simulation category. With the incorporation of physics-based mod-

eling approaches into the PDE framework, users can achieve real-time sculpting

of PDE surfaces.

The Lagrangian mechanics are associated with the discretized PDE (refer to

(4.4)) for the unified PDE modeling framework by attaching mass points on geo-

metric grids and adding springs between immediate neighbors on the discretized

PDE mesh, as shown in Fig. 4.2, then a dynamic version of PDE model can be

obtained:

MẌ + DẊ + (K + H)X = z + f . (4.6)

At the equilibrium, if stiffness distributions as well as the external force f are zero,

(4.6) reduces to (4.4) with additional material properties.

The composite dynamic PDE displacement surface model can be obtained in

the same way:

X = X0 + O,

MÖ + DȮ + (K + H)O = z + f ,
(4.7)
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Figure 4.2: Mass-spring network for the discretized PDE surface.

where

Ö ≈ (Ot+∆t − 2Ot + Ot−∆t)/∆t2, Ȯ ≈ (Ot+∆t − Ot−∆t)/2∆t.

By allowing the PDE model to dynamically deform in time domain, users will

have a natural feeling when they interactively manipulate the PDE model, which is

lacking without Lagrangian equations of motion. Furthermore, material properties

can be introduced to govern the behavior of the underlying PDE model. This

hybrid formulation permits users to obtain a surface that satisfies both geometric

criteria and functional requirements at the same time.

4.6 Interactive Sculpting Techniques for PDE-based

Surfaces

The PDE modeling system provides various interactive techniques for PDE-

based surface sculpting.



4. PHYSICS-BASED PDE SURFACES 71

4.6.1 Surface Initialization

The PDE modeling system supports three topological types of PDE surfaces.

At the beginning of the initialization phase, users must specify the surface type,

i.e., whether the surface is open or closed along u and v directions. Because any

direct manipulation must be based on the user-defined initial surface, users need

to select boundary conditions to generate a PDE surface as an initial step. The

system provides users two different ways to set up boundary conditions of the

PDE surface. First, users can interactively input some control points by click-

ing/dragging the mouse at desired locations on the screen, and the system will

calculate cubic B-spline curves as boundary curves, boundary derivative curves,

or other special curves the PDE surface must interpolate. The boundary deriva-

tive curves are two curves corresponding to the two boundary curves, respectively.

The difference between any point on each derivative curve and its associated point

on the boundary curve will be used to determine both the magnitude and the di-

rection of the tangent vector across the two boundary curves. Alternatively, users

are allowed to define boundary conditions using certain analytic functions. The

point coordinates are sampled along the analytic curves and saved into a data file.

The system then can access data files and initialize the PDE surface based on an-

alytic function curves. After the boundary conditions are determined, the PDE

surface can be derived from the solution of the linear equations subject to these

conditions.

4.6.2 Generalized Boundary Constraints

The solution of (4.1) is subject to boundary conditions. In general, there

are several types of boundary conditions according to the information they con-

tain. Currently, this dissertation considers three kinds of boundary constraints:
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(1) Hermite-like constraints; (2) Coons-like constraints; and (3) Gordon-like con-

straints in analogy with their corresponding free-form surface formulation.

Hermite-like conditions include positions and the first-order or even higher-

order derivatives of boundary curves. For the fourth-order PDE shown in (4.1),

the boundary conditions may be Hermite-like (i.e., two boundary curves at u = 0

and u = 1, and their corresponding first-order derivatives). The two boundary

curves define the edges of the surface and the two derivative curves determine

the gradient information across the boundaries, which outline the surface shape.

Fig. 4.3 and Fig. 4.6 show examples of this type of conditions.

(a) (b) (c) (d)

Figure 4.3: PDE surfaces from Hermite-like boundary conditions. (a) Boundary

conditions, where boundary curves are in red and derivative curves in pink; (b)

the surface subject to (a); (c) three sets of boundary and derivative curves for a

connected PDE surface; (d) the connecting result.

For any four-sided surface patch, there are four boundary curves in general.

In the parametric domain of u and v, the boundary curves are those at u = 0,

u = 1, v = 0, and v = 1, respectively. This kind of conditions, in analogy

with Coons patch, is considered as Coons-like boundary conditions. Using such

conditions, users can easily obtain surfaces that are open along both u-direction

and v-direction, or closed along v and open along u. Note that, for surfaces that

are closed only along v, it is equivalent to consider that two boundary curves at

v = 0 and v = 1 are the same. Fig. 4.4 has an example of this boundary type.
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Although four boundary curves can provide a solution of the PDE surface,

they are far from enough to define complex geometry, especially when users seek

the solution for PDE surfaces that are closed along both directions of u and v (e.g.,

tori). In this scenario, users need to define a curve network that the PDE surface

must interpolate. This kind of boundary constraints is a direct generalization of

Gordon surfaces [54]. Hence, the Gordon-like boundary conditions consist of a

family of isoparametric curves X(ui, v) = fi(v) and X(u, vj) = gj(u), where

0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1. An example of this type of geometric construction

is shown in Fig. 4.4. In the example, the boundary curves at u = 0, v = 0 (which

is the same as v = 1), v = 0.25, v = 0.5, and v = 0.75 are specified. The control

function a(u, v) = 4.3.

(a) (b) (c) (d)

Figure 4.4: PDE surfaces with Coons-like and Gordon-like boundary conditions.

(a) Coons-like boundary curves; (b) the corresponding surface of (a); (c) Gordon-

like curve network with curves at u = 0, u = 0.5, u = 1, v = 0, v = 0.5, and

v = 1; (d) the PDE surface from (c).

If the boundary curves are B-spline curves, users can modify the shape of

the PDE surface globally by changing the B-spline control points of boundary

curves. If the boundary curves are obtained through certain analytic functions,

users can change them in the same way as adding additional conditions discussed

in following sections.
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4.6.3 Multi-Grid PDE Surface Subdivision

Although the iterative techniques are easily implemented, oftentimes the large

number of sample points of a PDE surface result in the slow convergence of such

techniques. To improve the computation performance, a multi-grid approximation

based on popular subdivision schemes is proposed. At first, starting with a small

number of sample points on the coarsest grid of a PDE surface, the coarse solu-

tion of the PDE surface can be easily obtained quickly. Second, users can refine

the coarse mesh through the simple linear interpolation or more complicated sub-

division schemes such as Butterfly subdivision [52] or quadrilateral interpolating

subdivision [77]. Then the new subdivided mesh can be used as an initial guess

for successive iterations. The finer grid is then computed iteratively to achieve a

more accurate and smoother solution of the PDE surface. During the multi-grid

process, the up-sampling of all generalized boundary curves is achieved through

the use of four-point interpolatory subdivision scheme [52] in order to guarantee

the smoothness requirement of the refined curves. Given control points {x0
i }n+2

i=−2,

the points at level k + 1 of the subdivision are defined by

xk+1
2i = xk

i −1 ≤ i ≤ 2kn + 1

xk+1
2i+1 = (1

2
+ w)(xk

i + xk
i+1) − w(xk

i−1 + xk
i+2) −1 ≤ i ≤ 2kn + 1

(4.8)

According to [52], the curve is tightened toward the control polygon as w → 0 ,

and for any 0 < w < (
√

5 − 1)/8, the interpolated curve is a C1 curve. Because

w influences the smoothness of the boundary curves, the system allows users to

change the value of w in order to obtain satisfactory results. Fig. 4.5 shows an

example using the multi-grid subdivision.
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(a) (b) (c) (d)

Figure 4.5: The multigrid solution for a PDE surface. (a) Initial boundary condi-

tions; (b) PDE surface of sampling grids 15 × 15; (c) PDE surface of sampling

grids 30 × 30; (d) PDE surface of sampling grids 60 × 60. Note that, w is 0.1 in

this example.

4.6.4 Manipulating Boundary Conditions

Because boundary curves are defined by B-spline curves, or have B-spline

approximation, we can modify the shape of the PDE surface globally by changing

B-spline control points of boundary curves. Fig. 4.6 shows an example.

(a) (b) (c) (d)

Figure 4.6: Changing direct-input B-spline boundary conditions of a PDE surface.

(a) Initial B-spline boundary curves with control points; (b) the corresponding

PDE surface; (c) modified boundary conditions; (d) the modified surface.
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4.6.5 Modifying Control Function a(u,v)

The blending coefficient function a(u, v) can also influence the surface shape.

The value of a(u, v) controls the relative smoothness and the level of variable

dependence between the parametric directions of u and v. For a large ai,j at point

xi,j , changes in the u direction occur within a relatively short length scale, i.e., it

is 1/ai,j times the length scale in the v direction in which similar changes can take

place. Consequently, the user can control how boundary conditions influence the

interior of the surface by modifying the length scale (i.e., ai,j) at arbitrary point

on the PDE surface. In general, the control function a(u, v) can be interactively

“painted” over the entire surface (see Fig. 4.7).

(a) (b) (c)

Figure 4.7: Effects of changing blending coefficient a(u, v). (a) The PDE surface

of a(u, v) = 3.0; (b) the surface after changing value of a(u, v) on the yellow part

on the surface to 5.0; (c) the surface by setting a(u, v) = 5.0 for all sample points.

4.6.6 Joining Multiple Surfaces

Oftentimes a single PDE surface may not satisfy complicated design require-

ments, because real-world objects exhibit both complex topological structure and

irregular geometric shape. Patching multiple PDE surfaces together can provide
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such shapes. In the PDE modeling system, users can join n − 1 PDE surfaces se-

quentially by specifying 2n Hermite-like boundary conditions (where n ≥ 3).

Note that, 2n conditions are necessary because two neighboring PDE patches

share one common boundary. To satisfy C1 continuity, the tangent vectors across

the shared boundary must be the same. Note that, because the coefficient function

a(u, v) in (4.1) may vary throughout the u − v domain, the technique of joining

multiple surfaces can be considered to be equivalent to generating one “larger”

PDE surface with different local control. Fig. 4.3 has an example.

4.6.7 Sculpting Tools and Geometric Constraints for Global

and Local Deformation

By changing boundary curves, users can modify the entire shape of a PDE

surface, i.e., users obtain global deformation of the PDE surface. However, when

the global appearance of a PDE surface is satisfactory, any subsequent sculpting

via boundary conditions may destroy certain already-existing nice features of the

underlying surface. In this situation, making small changes on a localized region is

more desirable. This can be done by enforcing additional constraints on the PDE

surface. Note that, the original finite-difference formulation consists of m × n

equations and m×n unknowns, i.e., the coefficient matrix is a square matrix. The

introduction of additional conditions forces the system to incorporate a set of new

equations into the original set. In this dissertation, such additional constraints are

treated as hard constraints, i.e., the additional equations must be satisfied. In this

case, the system needs to explicitly formulate constraints and incorporate these

additional constraints into the original equations. This can be done by replacing

the corresponding equations in the original system with these hard constraints.

For example, if users want to move a sample point on the discretized surface to
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a new location, xi,j = x0, the equation xi,j = x0 will be used to replace the

corresponding discretized difference equation approximating the PDE at the point

xi,j , i.e., Hi×n+j,i×n+j = 1, all other H(i×n+j,k = 0 for k �= i × n + j, and

zi×n+j = x0 in (4.4). This method works well if the additional constraints are

of linear form (e.g., fixing a subset of certain unknowns or three points must be

co-linear, etc.). As a result, (4.4) becomes

HcX = zc, (4.9)

where the additional constraints are explicitly formulated and enforced within the

original equations. For such situations, the direct solver may not guarantee a

satisfying result. So the iterative method can be performed to get the approximate

solution. Accordingly, the physics-based PDE model after enforcing additional

constraints can be formulated as:

MẌ + DẊ + (K + Hc)X = zc + f , (4.10)

Point Editing

The PDE modeling system permits users to interactively sculpt PDE surfaces

by enforcing additional constraints on a set of selected points as well as their

normal and curvature:

Point Sculpting To manipulate a surface directly, one desirable way is to en-

force the PDE surface interpolating certain specific locations in 3D space. This

can be done by picking a point on the sampling surface grid, say xi,j , then drag-

ging it to the position where users want the surface to pass through. The point can

be arranged to stay anywhere within users’ view frustum, say p. Then the system

can replace the corresponding difference equation for point xi,j in (4.4) by the
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(a) (b) (c)

Figure 4.8: Examples of point-based manipulation. (a) Changing the location of a

surface point; (b) normal modification of a selected point on the PDE surface; (c)

the modified surface after changing curvature at a selected point.

equation xi,j = p. The updated linear equation system are re-solved. Because the

point xi,j are specified to interpolate the position, the value of the point is not al-

lowed to change during the approximating iteration. The surface will be deformed

according to the modification. Users can edit a set of points in a sequential order,

and the modified surface interpolates all the select data points. Fig. 4.8 (a) shows

a modified PDE surface by changing the position of one point on the original sur-

face. And Fig. 4.18 (a) shows a snapshot of modifying a point on a dynamic PDE

surface.

Normal Rotation Users can also manipulate the surface normal on any point to

achieve a local editing capability in the vicinity of the data point, as demonstrated

in Fig. 4.9. This is because the normal of a continuous surface at a selected

surface point can be approximated by its neighbors using finite-difference method:

ni,j =
xi+1,j−xi−1,j

2∆u
× xi,j+1−xi,j−1

2∆v
.

When users rotate the normal at the selected point, the system will subse-

quently compute the new positions of the four neighboring points according to the

new normal direction. Then the new positions of these four neighboring points are
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(a) (b)

Figure 4.9: The change of the normal at a point corresponds to the change of

positions of its neighbors. (a) Normal ni,j of xi,j; (b) the new normal n′
i,j leads to

the change of points xi−1,j , xi+1,j , xi,j−1 and xi,j+1.

formulated into four equations and the system simply enforces four new equations

within the linear equation system (4.4). By solving the constrained equations, the

modified surface with the changed normal at the selected point can be obtained.

An example for this kind of constraints is shown in Fig. 4.8 (b).

Curvature Manipulation Since the curvature measures the intrinsic shape of

a curve/surface, users can also modify the curvature at arbitrary point. Users

are allowed to modify the surface curvature at any point along u-direction and

v-direction, respectively. Curvature changing can be achieved by modifying the

neighboring points. The curvature of a curve can be defined by: κ = ‖x′×x′′‖
‖x′‖3 .

Now the curvature at any surface point along u-direction and v-direction can be

defined as:

κu =
‖∂X

∂u
× ∂2p

∂u2 ‖
‖∂X

∂u
‖3

, κv =
‖∂X

∂v
× ∂2X

∂v2 ‖
‖∂X

∂v
‖3

. (4.11)

It implies that changing curvature will modify the positions of the neighboring

points. But directly solving the above equations requires to deal with non-linear

equations. To avoid this and keep the implementation algorithms simple for real-

time geometric design, the solution can be approximated as follows. Note that any

curvature modification reflects the distance between the two neighboring points
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(a) (b)

Figure 4.10: Curvature modification via changing the distance between the neigh-

boring sample points. (a) High curvature due to reducing distance; (b) low curva-

ture due to stretching distance.

along the corresponding parametric direction (refer to Fig. 4.10), so the curvature

information can be interactively modified by attempting to move the neighboring

points (e.g., xi−1,j and xi+1,j for κu at xi,j). In general, increasing the distance

will reduce the magnitude of the curvature, while decreasing the distance will

have an opposite effect on the curvature value. After the system computes the

new position of relevant neighbors corresponding to the curvature manipulation,

it can incorporate these known values of data points into the system and re-solve

the equations to derive the new surface that satisfies a set of curvature constraints

simultaneously. Fig. 4.8 (c) shows modifying a PDE surface with curvature con-

straints.

Users can change the shape of a PDE surface by modifying the curvature at

arbitrary points.

Curve Constraints

Although point-based conditions provide designers useful manipulation tools,

point editing is less appropriate when users are faced with complicating design

requirements. The PDE modeling system provides editing tools that afford the

intuitive specification of curve-based constraints. First, users can select a source

curve on the PDE surface by picking points on the u − v domain. The curve is
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allowed to be of arbitrary form because the selected points may have arbitrary

values of u and v, giving users more freedom for the effective surface editing.

Second, users may interactively specify a cubic B-spline curve as the destination

curve which will then be mapped to the selected surface curve. The B-spline

curve shares the same number of sample points as that of the source curve. B-

spline curves are used because of many of their nice properties. Third, the system

will enforce the source curve to be in the same shape as the destination curve. The

B-spline destination curve adds a number of new linear equations into (4.4), and

the PDE surface will be modified accordingly. Users can freely modify or even

re-define a destination curve which leads to different PDE surface geometry. In

principle, boundary conditions can be special variants of curve-based constraints.

Fig. 4.11 illustrates an example of non-isoparametric curve constraints.

(a) (b) (c)

Figure 4.11: Curve editing. (a) The selected source curve shown in red; (b) the

destination curve; (c) the deformed PDE surface after curve attachment.

Region Manipulation

Certain surface models exhibit special features in specific regions, hence it is

more desirable to develop region-based editing tools toward the ultimate goal of

feature-based design. Analogous to the aforementioned curve tool, the system
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can map a user-specified B-spline destination patch onto a region of interest over

the PDE surface. First, users select an area over the PDE surface. Second, users

can define a B-spline patch which are sampled to have the same number of grid

points as those in the source region. Third, the system maps the specified area to

the B-spline patch. Users can interactively deform the B-spline patch or create

a new destination patch that imposes area constraints on the PDE geometry (see

Fig. 4.12). Because the surface-surface mapping algorithm depends on the struc-

ture of sampling grids, the system only considers source regions with rectangular

grid in the interest of simplicity.

(a) (b) (c)

Figure 4.12: Region sculpting. (a) The selected source region shown in red; (b)

the B-spline destination patch; (c) the deformed surface after area attachment.

Sculpting and Trimming Localized Regions

Conventional PDE surfaces only support global manipulation, i.e., any local

modification results in a new surface undergone the global deformation. This

deficiency severely restrains users’ freedom of arbitrary surface manipulation at

any localized region(s). To overcome this difficulty, the system allows designers

to freeze any specified area of a PDE surface that they do not want to change.

This can be achieved in the PDE modeling system by selecting a region in u − v
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domain, then any changes outside this region will not affect any data points inside.

as shown in Fig. 4.13.

(a) (b)

Figure 4.13: Surface manipulation with fixed regions.

In addition, the system offers users functionalities to trim a PDE surface. Af-

ter the boundary of a selected region is identified, users can remove material from

the PDE surface either inside or outside the specified boundary. The system also

allows trimming on multiple regions simultaneously, which can be done by speci-

fying several patches of interests on the surface. The trimming operation on PDE

surfaces can greatly improve the PDE surface’s utility, making it possible to ob-

tain a PDE surface with complex boundaries and arbitrary topological shape (see

Fig. 4.14).

(a) (b)

Figure 4.14: Trimming on the selected regions. (a) The surface after the removal

of the selected regions; (b) the surface after the removal of all non-selected area.
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Direct Displacement Manipulation

The interactive sculpting toolkits are able to manipulate the vector-valued dis-

placements controlled by the PDE formulation. Similar to the constrained PDE

surface (4.9), the formulation for constrained PDE surface displacements can be

written as:

HcO = zc. (4.12)

The surface deformation is done through the manipulation of displacements

while the original surface remains untouched. This enhancement allows the sys-

tem not only to design surfaces by boundary conditions but also to manipulate

existing mesh models directly, which further broadens the applications of PDE

surface modeling techniques. Fig. 4.15 shows examples of local point editing

on the PDE displacements. Fig. 4.16 has examples for curve manipulation and

region sculpting of displacement models.

(a) (b) (c) (d)

Figure 4.15: Examples for displacement PDE surface sculpting. (a) Changing a

point’s location on a PDE displacement model; (b) the vector-valued displacement

map on the original surface is shown in lines; (c) point sculpting outside the fixed

region (yellow) of displacements; (d) the original surface and the displacement

vectors of (c).
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(a) (b) (c) (d)

Figure 4.16: Examples for curve and region editing on PDE surface displace-

ments. (a) A PDE surface sculpted using curve editing on displacements; (b)

the corresponding vector-valued displacement map on the underlying surface; (c)

region manipulation of PDE displacements; (d) the original surface and the dis-

placement vector map of (c).

B-spline Approximation

To facilitate the data exchange capability of PDE surfaces with standard spline-

based systems, the system computes B-spline finite elements to approximate PDE

surfaces throughout the manipulation process. A B-spline surface over u, and v

domain can be defined as (3.3) by a set of control points Pi,j(1 ≤ i ≤ k, 1 ≤
j ≤ l). Oftentimes the number of control points is less than the number of sam-

ple points on the PDE surface, therefore the B-spline approximation results in a

family of over-constrained linear equations whose unknowns are fewer than the

number of equations. For example, given the m × n sample points on the PDE

surface, the approximation using k × l control points leads to

BP = X, (4.13)

where there are m × n linear equations with k × l unknowns. Assuming fixed

parameterization of data points in B-spline approximation, the matrix B is a dis-

cretization of basis functions, P is the collection of control points, and X repre-

sents the collection of sample PDE surface points. This over-constrained system
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can be solved by multiplying B� on both sides of (4.13). Consequently, a B-

spline surface that approximates the PDE surface in a least-square sense (4.14) is

obtained.

P = (B�B)−1B�X. (4.14)

Fig. 4.17 shows B-spline approximations examples.

(a) (b)

Figure 4.17: B-spline approximations for PDE surfaces. The blue lines with pink

points form the B-spline control mesh.

(a) (b)

Figure 4.18: The PDE surface sculpting with physical constraints. (a) Directly

changing a point of a mass-spring model; (b) point editing in B-spline approxima-

tion for the mass-spring model, and the color mapping shows different material

properties (refer to Table 9.4).

Meanwhile, B-spline finite elements can also be used to approximate the dy-

namic model of PDE surfaces at each time step. This allows users to interactively
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manipulate the B-spline solution of PDE surfaces with forces in real-time. Be-

cause the B-spline control mesh is obtained using least-square fitting, the addi-

tional constraints of the approximated PDE surface are treated as soft constraints

that results in a smoother solution for the PDE surface than the one obtained under

hard constraints. Fig. 4.18 (b) shows a snapshot of modifying a dynamic B-spline

approximation model of a PDE surface.



Chapter 5

PDE-based Arbitrary Mesh

Modeling

The previous PDE modeling techniques for surface models usually focus on

parametric surfaces, which extremely limits their applications in geometric model-

ing where large number of geometric objects are represented by polygonal meshes.

To develop a general geometric PDE modeling framework, this dissertation in-

corporates a couple of functionalities on arbitrary polygonal meshes to further

extend the coverage of PDE modeling techniques. The PDE-based modeling sys-

tem offers shape modeling of arbitrary topology including using elliptic PDEs for

arbitrary shape sculpting, diffusion-based equations for medial axis or skeleton

extraction from arbitrary meshes, and diffusion-based front propagation models

for shape manipulation and recovery based on skeletons. This work extends the

geometric coverage of PDE techniques to arbitrary objects bounded by polygonal

meshes. And the diffusion-based medial axis extraction and shape manipulation

provides modeling operations for complex objects which are lack from previous

work of PDE methods. Part of this work has been accepted by Solid Modeling

89
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2004 [49] and Another paper based on this work is in preparation for journal sub-

mission [50].

5.1 Introduction and Motivation

There are several popular techniques to define the surface geometry in com-

puter graphics and geometric modeling. Besides the implicit surfaces and the

parametric definitions (spline-patches and previous PDE models) over regular

domain, another often used shape representation is the explicit polygonal mesh

model. In particular, polygonal meshes can be considered the most versatile rep-

resentation for general free-form surface geometry. Due to the simplicity and ro-

bustness of algorithms operating on triangle meshes, arbitrarily complex objects

can be approximated using such representation with sufficient resolution.

Subdivision methods are among the most popular modeling techniques for

such models. It came from the idea of ”cutting corner” by working directly on

the control mesh/lattice to generate smooth objects. It avoids the difficulties of es-

tablishing the correspondence of parametric domain and the objects coordinates.

Subdivision techniques have simple underlying principles and easy-to-understand

schemes to model surfaces/solids of arbitrary topology. However, conventional

subdivision rules can only handle simple geometric objects. To model compli-

cated shapes and sharp edges, corners, as well as other small details on the subdi-

vision objects, special subdivision schemes with additional requirements have to

be derived, which increases modeling difficulties for general applications.

Since PDE techniques are previously used for surface fairing of arbitrary meshes

[38, 79, 137], they can also be considered for interactive manipulation of surface

meshes of arbitrary topology with the integration of displacement maps. With this

functionality, the PDE modeling system provides direct manipulations for surfaces
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of arbitrary topology.

However, when modeling complex shapes with a large number of surface ver-

tices, applying manipulations directly on the object will slow down the time per-

formance. In such case, a type of representation that can preserve the complex

features and maintain simple structure for manipulation is more desirable. Medial

axis models can be an ideal candidate to satisfy such requirements with ease.

The medial axis (or skeleton) provides a compact representation while pre-

serving the object’s genus and retaining sufficient local information to reconstruct

(a close approximation to) the original shape. This type of representations are of

significant interests for a number of applications in biomedicine, including ob-

ject representation, shape understanding, registration, and segmentation. Such de-

scriptions are equally popular and powerful in geometric shape modeling, model

reconstruction, shape analysis, animation, object deformation and manipulation in

computer-aided design and medical image processing, etc. Because of its popular-

ity, there are various developed algorithms using different techniques for medial

axis extraction in both 2D and 3D. However, the stable numerical computation of

medial axis remains a challenging problem.

PDE techniques such as level set methods and Hamiltonian system have been

applied for medial axis extraction in recent years [21, 75, 131] because of their

modeling advantages. However, the existing work of PDE-based medial axis ex-

traction techniques mainly focus on 2D images or volumetric data defined on dis-

cretized grids. They are often associated with Euclidean distance transformation

to compute the distance field on 3D lattices. Therefore, the space complexity will

increase dramatically for finer resolution. And the computation of distance field

for complex models will be much more time-consuming. Using the PDE approach

to detect medial axis or skeleton directly from arbitrary 3D meshes and/or B-reps

is still under-explored in general. In addition, because polygonal meshes are one
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of the most dominant representations for geometric models and widely used in

modeling and animation, the medial axis extraction to facilitate shape analysis

and manipulation for such models will be strongly desirable.

This dissertation presents a PDE technique to extract medial axis (or skeleton)

for arbitrary 3D objects bounded by polygonal meshes. It formulates a diffusion-

based equation with differential properties of the boundary surface to approximate

a simplified medial axis of the object. The diffusion-based equation is solved nu-

merically along the time axis, therefore users can obtain visual feedback during

the medial axis extraction process. Note that, it is straightforward to further gen-

eralize this method to handle other boundary representations. Users can define

their own medial axis for an object by selecting desired boundary points of the

object to be skeletal points on the medial axis. It provides users more degrees

of freedom for shape skeletonization and further manipulation. The proposed al-

gorithm also allows users to define local regions for skeletonization for part of

the object interactively during the process, which will speed up the medial axis

extraction for complex models. After the medial axis is extracted, shape manip-

ulation of original dataset can be performed by sculpting the skeleton and using

the diffusion-based front propagation techniques along with distance information

between the skeleton and its boundary surface to reconstruct the deformed shape.

Fig. 5.1 demonstrates some examples of extracted medial axes from several ob-

jects.

The diffusion-based medial axis extraction, skeleton-based shape deformation,

and the direct manipulation using elliptic PDEs provide modeling advantages of

PDE techniques for shape modeling of arbitrary polygonal meshes. With these

functionalities, the PDE techniques can be used for more general surface repre-

sentations and offer possible interactions with other surface modeling methods

including spline-based models, subdivision techniques, etc.
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(a) (b) (c) (d)

Figure 5.1: Medial axis extraction using the proposed PDE technique. The medial

axes are shown in red with transparent datasets surrounding them.

5.2 Direct Manipulation of Arbitrary Mesh Objects

2D elliptic PDEs are usually used to define parametric surfaces over regular

(rectangular) parametric domain. The parametric shape representations have diffi-

culties to model arbitrary topological objects. Arbitrary polygonal meshes, on the

other hand, can represent arbitrary objects with more flexible topology. Therefore,

applying PDE techniques on arbitrary polygonal meshes will greatly expand the

PDE application coverages and expose the modeling advantages of PDE methods

to more general surface representations. However, different from regular surfaces

with underlying rectangular parametric domain, an arbitrary mesh usually have ar-

bitrary vertex connectivities. Therefore, it’s a challenging task to discretize such a

mesh into homogeneous grids and apply previous finite-difference approximations

of partial derivatives, which implies that elliptic parametric PDEs cannot be used

to govern arbitrary polygonal surfaces directly. To overcome this, a type of differ-

ence operator called umbrella operator to approximate the Laplacian operator is

considered. It’s commonly used in fair surface modeling for 2D meshes[79, 137].

5.2.1 Umbrella Operator

Umbrella operator assumes the mesh has underlying regular parametrization

where edge length and angle between neighbor vertices are constant. Then the
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parametrization of (uj, vj) in the u − v parametric domain can be represented by

(uj, vj) = (cos
2π · j

n
, sin

2π · j
n

).

The Laplacian operator can be approximated by the discretized umbrella operator:

∇2pi =
1

n

∑
j∈N1(i)

pj − pi. (5.1)

However, regular parametrization is only suitable for ideal situations, while in

most occasions, the regular parametrization cannot give a satisfying result. The

umbrella operator can be improved by adding weights based on the connectivity

of the mesh which permits vertices drifting in parametric space and leads to non-

uniform mesh parametrization. One way is to allow edge lengths between vertices

not to be constant. The discretized Laplacian can then be approximated by

∇2pi =
2

E

∑
j∈N1(i)

pj − pi

ei,j

, (5.2)

where E =
∑

j∈N1(i) ei,j and ei,j is the edge length between pi and pj . The angles

between edges in the 1-neighborhood of a vertex on the mesh can also be consider

as weights in the umbrella operator. Fig. 5.2 shows the illustration of umbrella

operators.

(a) (b)

Figure 5.2: Umbrella operators. (a) Regular umbrella operator; (b) improved

umbrella operator.
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5.2.2 PDE Formulation for Arbitrary Meshes

The fourth-order differential operator in (4.1) can be approximated using um-

brella operators by setting the blending coefficient a = 1, which is called Bi-

harmonic operator ∇4 = (∇2)2. Second-order elliptic PDEs that use Laplacian

operator can also be used for the arbitrary mesh model. Because the datasets of

arbitrary meshes are taken as input from existing models, when calculating the

partial derivatives of the datasets, the right-hand side of the governing PDEs may

not be zero. Therefore, the fourth-order and second-order PDEs used to govern

the behavior of the input mesh are formulated as follows:

(
∂2

∂u2
+

∂2

∂v2
)2p = ∇2(∇2p) = F, (5.3)

and

(
∂2

∂u2
+

∂2

∂v2
)p = ∇2p = F, (5.4)

where (5.4) has the form of Poisson equation.

Before the shape manipulation, an initialization process is performed to calcu-

late the partial derivatives in (5.3) and (5.4) and values for the right-hand side, F,

are obtained. For each vertex pi on surface p, ∇2(∇2pi) can be approximated by

∇2(∇2pi) =
1

n

∑
j∈N1(i)

∇2pj −∇2pi, (5.5)

∇2pi =
1

n

∑
j∈N1(i)

pj − pi, (5.6)

where N1(i) is the collection of vertices in 1-neighborhood of pi and n is the

valence of pi, i.e., number of vertices in N1(i).

5.2.3 Direct Manipulation of Arbitrary Meshes based on PDEs

To sculpt a polygonal mesh object to desired shape, users can pick a vertex

on the discrete mesh and move it to another location, then the shape will deform
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(a) (b) (c) (d)

Figure 5.3: An example of PDE model of arbitrary meshes. (a) Original dataset;

(b), (c), and (d) are deformed sequences from (a), where only the blue parts are

allowed to deform.

according to the modification. However, because the PDE is formulated based on

the initial shape, the vertices on the polygonal mesh are constrained to each other,

which indicates that without additional constraints on the mesh, the entire shape

will not deform with the location change of one point but only transform to the

new location according to the change. Therefore, users need to specify additional

constraints such as fixing selected parts of the object to allow the shape to deform.

Fig. 5.3 shows examples for this kind of deformation. Alternatively, the polygonal

surface can be modeled as original surfaces with displacement maps using the

techniques introduced in Chapter 4. Then surface deformation can be obtained by

sculpting surface displacements without touching the underlying original surface.

5.3 Diffusion-based Medial Axis Extraction

Shape skeletons (i.e., medial axes) are popularly used in many visual com-

puting applications, such as pattern recognition, object segmentation, registration,

and animation. Meanwhile, certain PDE techniques such as level set methods and

Hamilton-Jacobi equation have been used to detect medial axes of 2D images and

volumetric data with ease. However, direct extraction methods based on PDEs to
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detect skeletons of 3D solid objects bounded by arbitrary meshes are still under-

explored. This dissertation expands the use of diffusion equations to approximate

medial axes of arbitrary 3D objects represented by polygonal meshes based on

their differential properties. It offers an alternative but natural way of medial axis

extraction for commonly used 3D polygonal models. By solving the initial value

PDE along time axis, the system can not only quickly extract diffusion-based me-

dial axes of input meshes, but also allow users to visualize the extraction process

at each time step. In addition, this diffusion-based model provides users a set of

manipulation toolkits to sculpt extracted medial axes, then uses diffusion-based

techniques to recover corresponding deformed shapes according to the original

input datasets. This skeleton-based shape manipulation offers a fast and easy way

for animation and deformation of complicated geometric objects.

5.3.1 PDE Formulation of Medial Axis Extraction for Arbi-

trary Meshes

This dissertation employs a diffusion-based PDE that allows 3D objects to

propagate inward their boundaries and approximate simplified skeletons with user

interactions, which can provide users instant feedback and interactive control dur-

ing the extraction process. The distance information from skeletal points to the

boundaries is recorded for reconstruction and deformation purposes. When ma-

nipulating the skeleton, the original model can be deformed accordingly. Other

immediate applications include model simplification, skeleton-driven parameteri-

zation, and animation control of complex, articulated characters.
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Diffusion-based Equation

Medial axis extraction can be simulated using the idea of grassfire flow. The

grassfire flow on a surface S in 3D space is governed by

∂S

∂t
= N, (5.7)

which allows the fire front propagating at unit speed along the inward surface

normal N.

The simplest way to simulate (5.7) for medial axis extraction of a polygonal

mesh is to let vertices on the boundary surface travel along their surface normal

inward (i.e., shrinking the boundary) at each time step, and where the points meet

with each other forms the skeleton. However, the time step for this simulation

process needs to be very small to guarantee a close approximation of medial axes.

Furthermore, because the surface normal can only be approximates at discrete

sample points on the boundary polygonal mesh where the regular parametriza-

tion is not applicable, mesh sampling qualities will directly affect simulation re-

sults and the structure of obtained medial axes will be complicated for complex

datasets. In general, it’s difficult to achieve satisfactory results using direct simu-

lation of (5.7).

On the other hand, diffusion equations are frequently used for denoising in

image processing. They can also provide smooth results for geometric surface

fairing [38]. Because of their smoothing properties, this dissertation uses the

diffusion process for medial axis extraction from polygonal meshes, which will

provide simplified approximations and remove noisy branches on medial axes for

easy storage and manipulation. Since the main purpose of medial axis extraction

in this dissertation is to offer users a compact geometric representation for shape

manipulation and deformation, such approximations can provide satisfactory re-

sults.
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The diffusion-based equation for medial axis approximation can be formulated

as:
∂S

∂t
= D(N, κ)∇2S, (5.8)

where S = S(p, t) is the propagating boundary surface, p = (x, y, z) is the

coordinate vector, t ≥ 0 is time variable, ∇2S is the Laplacian of the surface,

and D is the diffusion coefficient function related to the surface normal N and

curvature κ. The normal N provides directions for boundary propagation during

the medial axis extraction process. The curvature κ is used as a threshold to

detect skeletal points on the medial axis. Because the Laplacian will smooth the

boundary surfaces and eliminate the sharp features during the propagation, the

use of curvature as a threshold can allow the propagation process to detect sharp

features of an object and preserve such properties on its simplified medial axis.

(5.8) is formulated to guide the boundary surface propagation. By solving

(5.8), the object’s surface will moving inward from the original boundary guided

by its normal, and the Laplacian will smooth the surface to avoid noisy branches

during the propagating process. The curvature acts as a threshold to preserve fea-

ture points of the object on the approximated medial axis. Therefore, after all the

points on the propagating surfaces collide with others, which means they reside

on a thin set, a compact structure without interior points inside can be obtained.

It can be viewed as an approximation for the real medial axis because it’s a thin

set inside the object and preserve features of the original dataset. Such a com-

pact and simple representation can provide satisfactory results for skeleton-based

shape manipulation. Note that, the shape reconstruction from skeletons is a re-

verse process of medial axis extraction by applying the normal outward to original

boundaries. The diffusion equation is suitable for continuous geometric objects



5. PDE-BASED ARBITRARY MESH MODELING 100

including surfaces and solids. Although it is solved on discrete polygonal bound-

ary surfaces numerically in this dissertation, the equation can be readily applied

to other type of solid representations for medial axis extraction.

Numerical Simulations

Diffusion equations can be easily solved through numerical techniques. To

simplify the process and provide a fast algorithm for medial axis extraction, the

PDE-based modeling system employs the finite-difference discretization associ-

ated with umbrella operators for iterative computations of the evolving surface.

The diffusion-based equation (5.8) can be discretized as follows:

pn+1
i − pn

i

∆t
= D(Ni, κi)(

1

n

∑
j∈N1(i)

pn
j − pn

i ), (5.9)

The surface normal at a sample vertex on an arbitrary mesh object is also

calculated using numerical approximation techniques. The simplest way is first

calculating the normals of surface patches around the target point, then averaging

the surface patch normals to approximate the normal at the point. However, this

method only provides a rough approximation of surface normals at sample points.

There is another way to approximate the surface normal at a point [165] to provide

more satisfying normal approximations. The normal Ni at vertex pi can be com-

puted using approximate tangent vectors of the surface at pi that can be computed

as:

t1 =
n−1∑
j=0

cos
2πj

n
pj, t2 =

n−1∑
j=0

sin
2πj

n
pj,

where n is the valence of pi, and pj are its neighbors.

The approximate surface normal Ni at pi can be computed as

Ni = t1 × t2. (5.10)
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Since the diffusion process is also influenced by the surface curvature, it’s nec-

essary to evaluate the curvature values at the boundary surface. This dissertation

considers the contribution of Gaussian curvature for medial axis extraction. Note

that,the curvature is used as a threshold to define skeletal points on the medial axis

to preserve shape features, therefore other types of curvature instead of Gaussian

curvature can also be employed for this purpose. A local approximation scheme

is used to compute Gaussian curvature of sample points on the boundary surface

based on Gauss-Bonnet theorem. The Gaussian curvature κ at a surface vertex is

related to angles and faces connected to the point on the surface [149]:

κ =
φ

A
,

where φ is the angular defect at the point which is defined as 2π - sum of the

interior angles of faces meeting at the point and A is the area associated to the

point that is equal to 1
3

of the sum of the areas of the triangles meeting at the point.

Therefore, the Gaussian curvature κi at point pi can be computed as follows:

κi =
2π − ∑n−1

j=0 φj

1
3

∑n−1
j=0 Aj

, (5.11)

where φj is the angle of the jth face connected to pi and Aj is the corresponding

triangle’s area. (5.11) is for inner points on a mesh and suitable for any points in

a closed surface. As for open surfaces, the approximation for Gaussian curvature

of a boundary point can be evaluated using the following scheme:

κi =
π − ∑n−1

j=0 φj

1
3

∑n−1
j=0 Aj

, (5.12)

An illustration of Gaussian curvature approximation for a mesh point is shown

in Fig. 5.4.

With numerical discretizations and approximations for Laplacian operator,

surface normal, and curvature, (5.9) can be easily solved by iterative method along
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(a) (b)

Figure 5.4: The evaluation of Gaussian curvature for a mesh point. (a) Gaussian

curvature for an internal vertex; (b) Gaussian curvature for a boundary vertex.

the time axis. The diffusion equation will evolve along the time axis according to

the surface curvature and normal, and the medial axis resides on the locations

where different parts of the propagating surfaces meet. Because of the discretized

property, users can freeze certain points on the mesh to let them stay at their cur-

rent positions during the process to obtain different skeletons. Furthermore, Users

can select a region to extract the medial axis inside the region for localized results.

Because the distance information between skeletons and the corresponding

original boundary surfaces is already saved, the original object can be recovered

easily by propagating the surface from the extracted medial axis along the nor-

mal outward. Moreover, after skeleton manipulations, the deformed shape can be

reconstructed through diffusion equation to obtain a smooth result.

5.3.2 PDE-based Skeletonization and Shape Manipulation

Diffusion-based Medial Axis Extraction: An Algorithmic Outline

This dissertation uses finite-difference techniques to approximate solutions for

the time-dependent diffusion-based equation numerically in order to provide users

progressive results for medial axis approximation and shape reconstruction.

Starting with the original mesh, the PDE-based modeling system extracts the
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: An example of PDE-based medial axis extraction for arbitrary meshes.

(a) Original dataset; (b), (c), (d) and (e) are shrinking objects during medial axis

extraction at different time step by performing (5.9); (f) is the final approximate

skeleton.

medial axis according to differential properties of the boundary mesh, and allow

the mesh to shrink to an approximate medial axis. The extraction algorithm con-

sists of following operations:

• Initialization: at the initialization stage, the system approximates the sur-

face normal for the boundary surface using (5.10) and other differential

properties such as Gaussian curvature based on (5.11) and Laplacian using

umbrella operators.

• Skeletonization: during the skeletonization process, at each time step, the

system first computes the evolving surface based on (5.9). Then collision

detection is performed on the resulting surface. If a surface point collides

with any other point, edge, or face, it is considered as residing on the skele-

ton. In such case, it is marked as a skeletal point with its position fixed and
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the distance information from original surface point to this skeletal point is

recorded. After all the points are checked for collision detection, surface

optimization is applied to delete redundant points and faces with too small

areas. This process is repeated until all points on the propagating surface

are marked as skeletal points.

• User Interaction: in addition, during the extraction process, users can inter-

actively select any vertices on the propagating surface to be skeletal points,

thus they can define the user-controlled skeleton based on their own cri-

teria. Users are also allowed to define local regions for local medial axis

extraction.

The medial axis extraction using the proposed diffusion-based technique is

a progressive process along time, which offers users visual feedback during the

extraction. Fig. 5.5 shows an example of progressively extracting medial axis for

an object.

After this skeletonization process, the system obtains a simplified skeleton ap-

proximating the object’s medial axis associated with distance information between

the skeleton and the original boundary surface. With such information, users can

manipulate the object through its skeleton with ease.

Local Region Skeletonization and User Interaction

To explore local features, the system offer users local skeletonization by ex-

tracting the medial axis of a selected part of an object. This can be done by speci-

fying a region in the 3D working space and the system will only extract a skeleton

for part of the object residing in the region. By allowing medial axis extraction

in local regions, it will reduce the time complexity of shape skeletonization for

complex models and enable direct user control. Refer to Fig. 5.6 for an example.
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(a) (b) (c) (d)

Figure 5.6: An example of PDE-based medial axis extraction for selected parts

from arbitrary meshes. (a) Original dataset; (b) and (c) are two examples of ex-

tracting skeletons for part of the dataset; and (d) is the skeleton for the entire

dataset.

Because the system provides a simplified approximation of medial axis for

an object, the result may not satisfy users expectation sometimes. For example,

there are certain points on the object that users want to be on the medial axis, but

the system doesn’t mark them as skeletal points during medial axis extraction pro-

cess. Therefore, users are allowed to select desired points on the boundary surface

to be skeletal points for any user defined skeleton during the extraction process,

which can provide more degrees of freedom for later skeleton-based shape ma-

nipulation (Fig. 5.7). Since manipulations on different shape of skeletons can

result in different shape deformations, these user interactions provide more flex-

ibility/freedom and control for skeleton-based shape sculpting. Furthermore, be-

cause the diffusion-based equation is solved on polygonal meshes, the number of

points on the meshes will extremely affect the performance of the medial axis ex-

traction process. It’s time consuming to extract medial axes for complex models.

Therefore, local medial axis extraction in selected regions will be useful for such

cases. It’s also possible to integrate parallel techniques with this method for shape

skeletonization of large datasets.
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(a) (b) (c) (d)

Figure 5.7: Examples of PDE-based medial axis extraction with user-defined

skeletal points. (a), (b) and (c) are different skeletons obtained after fixing dif-

ferent surface points as skeletal points; (d) is the skeleton of Fig. 5.5 by fixing a

point at the bottom of the dataset.

Skeleton-based Shape Sculpting

One of the advantages of medial axes is that they provide a much more com-

pact and natural representation for geometric objects. Therefore, the shape defor-

mation/manipulation and other processes based on medial axes alleviate the bur-

den of tedious and less insightful operations for deforming and animating complex

objects, as well as other shape queries and interrogations. The PDE-based mod-

eling system provides users sculpting tools to manipulate the medial axis, then

propagates the deformation to the original dataset according to the distance infor-

mation. However, the deformed result may not be satisfactory if the system just

simply reconstructs the object from the medial axis according to its distance to the

original dataset. Therefore, the diffusion-based equation with normal outward to

the original boundaries is employed to reconstruct the modified dataset. Fig. 5.8

and Fig. 5.9 have two examples of shape manipulation based on skeleton mod-

ification and shape reconstruction using diffusion propagation. Fig. 5.10 shows

a deformation sequence of an object through skeleton manipulations. It may be

noted that, from this point of view, this technique also serves as an aid for shape

parameterization and can be potentially improved for a powerful shape analysis
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tool (beyond shape sculpting and synthesis).

(a) (b) (c) (d)

Figure 5.8: An example of skeleton-based shape sculpting. (a) Original dataset;

(b) is the skeleton; (c) is the sculpted skeleton; (d) is the corresponding deformed

dataset recovered from (c).

(a) (b) (c) (d)

Figure 5.9: Another example of skeleton-based shape sculpting.

(a) (b) (c) (d)

Figure 5.10: A sequence of deformed shapes through skeleton-based shape sculpt-

ing.

Curvature Manipulation

Gaussian curvature of polygonal surfaces is employed in the diffusion equa-

tion for shape skeletonization. It works as the threshold for medial axis extraction
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(a) (b) (c) (d)

Figure 5.11: Examples of skeleton extraction with different value of curvature

thresholds.

to decide which surface points will be skeletal points. Thus, different value of

the threshold for Gaussian curvature of the boundary polygonal mesh will result

in different shape of skeletons. By allowing users to define the threshold them-

selves, they can obtain medial axes for an object according to their own criteria.

Fig. 5.11 shows examples for several medial axes extracted from an object with

different Gaussian curvature thresholds.



Chapter 6

Implicit Elliptic PDE Model

To maximize the modeling capabilities of PDE techniques and implicit func-

tions in geometric and visual computing areas, this dissertation proposes a PDE-

based modeling paradigm which integrates PDE techniques with implicit func-

tions into one single framework for interactive shape design and manipulation

of PDE-based volumetric implicit models. This dissertation presents an implicit

modeling module governed by elliptic PDEs of scalar intensity fields which can

reconstruct implicit objects and the embedding implicit 3D working space as so-

lutions of the PDEs by specifying a set of curve outlines or scattered data points

of certain intensity values as general boundary constraints with the assistance of

variational interpolating approaches and distance field approximations. Because

the curves and datasets are not required to be closed, open surfaces can be mod-

eled within the PDE modeling system. Moreover, it offers a set of sculpting toolk-

its to manipulate implicit objects, such as interactively modifying the geometric

shape, intensity value, and gradient direction of selected sketch curves, directly

changing intensity values, gradient vectors, and curvature information of selected

109
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regions in the working space, as well as deforming iso-contours at specified in-

tensity values of objects. Because the working space is governed by PDEs, any

missing information inside the space can be recovered by the PDEs according to

the given constraints. It is able to recover damaged datasets using partial informa-

tion, smooth the intensity distribution of volume data, and smoothly blend objects

inside the working space. In general, it allows intensity manipulation anywhere

in the implicit working space to model implicit objects at any iso-value either di-

rectly or indirectly, which offers users both local and global control for implicit

shape manipulation. This work has been published in Solid Modeling 2003 and

accepted by CAD Special Issue of Solid Modeling 2003 [47, 51].

6.1 Introduction and Motivation

The parametric PDE model simplifies the geometric design process by using

only boundary conditions to recover the whole interior information and offers

high-order continuity as well as energy minimization properties, like traditional

parametric approaches. However, it’s extremely difficult to model arbitrary shapes

of general topology, because parametric PDEs are defined over regular domain.

On the other hand, implicit functions are usually characterized by zero-sets

of polynomial-based algebraic equations and other commonly-used scalar equa-

tions. They form another powerful category of modeling techniques to represent

surfaces/solids in graphics, geometric design, and visualization, and offer cer-

tain advantages comparing with parametric methods such as point classification

and unbounded geometry. However, despite the modeling advantages of implicit

functions, implicit modeling operations in previous work are usually less intuitive

for common users. In general, the modeling potential of implicit functions has not

been fully explored yet and there are still difficulties to design, reconstruct, and
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sculpt implicit models directly and intuitively.

To further make use of the attractive features of implicit functions for interac-

tive design and sculpting, and expand the modeling coverage of PDE techniques,

this dissertation applies PDE techniques to formulate implicit functions which

may potentially bridge the gap between implicit functions and other geometric

and physics-based modeling techniques. This unified approach provides users

more powerful manipulation toolkits for volumetric implicit shape modeling. In-

stead of time evolution PDEs used in the level set method, static elliptic PDEs

for boundary value problems are employed with the assistance of the variational

energy minimization and distance field approximation. In particular, this disserta-

tion introduces a novel technique which defines the volumetric implicit objects as

the approximate solution of elliptic PDEs of scalar intensity fields under general-

ized boundary constraints. This method can be used for geometric shape design,

object reconstruction, and shape blending. Implicit PDE objects can be manipu-

lated by modifying the initial constraints or changing intensity values inside the

volumetric space, as well as sculpting iso-surfaces at specified values. This im-

plicit PDE approach has modeling advantages of both parametric PDE techniques

and implicit functions. Using implicit PDEs, not only objects, but also the entire

working space can be recovered from given information. The PDE-based model-

ing system doesn’t require the constraints to be closed datasets, which provides

modeling potentials for open surfaces. In addition, because implicit PDEs are

formulated on a scalar intensity field and define objects by collecting points of

certain iso-values, they are capable of designing arbitrary topological shapes and

recovering the full information from partial input, which will reduce the burden

of specifying the large quantity of constraints for complete datasets. This offers

users a natural way to design objects easily with general non-isoparametric arbi-

trary curve outlines, reconstruct objects from scattered data points, blend shapes
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in the working space, and recover damaged datasets. Implicit PDE objects can be

visualized by either using the Marching Cube [90] method which calculates the

triangulated iso-surface at certain selected intensity value on discretized sampling

grids, or through other volume rendering systems such as Pov-Ray and Vol-Vis

systems.

6.2 Elliptic PDE Formulation for Implicit Models

The implicit PDE formulation employed in this dissertation is founded upon

the parametric PDE solid models [45], which used a fourth-order elliptic PDEs to

establish a mapping from 3D parametric domain to 3D physical space and devel-

oped a set of sculpting tools over the resulting parametric PDE solids (7.1).

In order to take advantage of the interactive feature associated with parametric

PDE modeling techniques, this dissertation uses elliptic PDEs to define scalar in-

tensity fields for modeling implicit objects. Because higher order PDE can provide

higher-order continuity for the scalar intensity value distribution, a fourth-order

elliptic PDE is used to model the scalar field for smooth results with tangential

continuity, especially when dealing with shape blending and damage data recov-

ery in which most of information will be specified as constraints. In particular, the

unknown function is formulated as the intensity field function d(x, y, z) defined

in the physical space of x, y, and z instead of the vector function X(u, v, w) in the

parametric space of u, v, and w. The corresponding implicit PDE is formulated

as follows:

(a2(x, y, z)
∂2

∂x2
+ b2(x, y, z)

∂2

∂y2
+ c2(x, y, z)

∂2

∂z2
)2d(x, y, z) = 0, (6.1)

where x, y, and z are coordinate variables of 3D physical space varying from 0 to

1, respectively, which form a unit cube as the working space. a(x, y, z), b(x, y, z),
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and c(x, y, z) are arbitrary functions of x, y, z defining material properties of the

implicit space, which are initially defined as constants throughout the entire work-

ing space.

Because the numerical techniques to solve fourth-order elliptic PDEs used

in this dissertation are suitable for other boundary value PDEs, the system also

provides solutions for a second-order PDE:

(a2 ∂2

∂x2
+ b2 ∂2

∂y2
+ c2 ∂2

∂z2
)d(x, y, z) = 0, (6.2)

which is less time-consuming to solve with less continuous intensity distribution

and can be used for initial guess of intensity values of objects.

Because a(x, y, z), b(x, y, z), and c(x, y, z) are allowed to vary across d(x, y, z),

i.e., different locations in the physical domain may have different smoothing co-

efficient values, local control on implicit PDE objects can be easily achieved.

To obtain direct and local manipulation on implicit PDE objects, this disser-

tation solves (6.1) and (6.2) using numerical methods based on finite-difference

approximations of PDEs, which require at least six boundary conditions at x =

0, x = 1, y = 0, y = 1, z = 0, z = 1 that define intensity values at three bound-

ary surface pairs of the 3D working space in order to derive a unique solution.

However, in most applications, there are no such boundary conditions available

for modeling implicit objects, especially in the case of using implicit functions

for shape reconstruction, where the constraints are usually defined by certain con-

touring sketch curves or scattered points assigned with specified intensity values

inside the 3D working space. In such cases, the intensity distributions on the

boundaries are unknown. Thus, such problems cannot be solved by traditional

finite-difference methods directly. However, the intensity distribution for this

type of problems can be approximated as follows. First, the sytem can find an

initial guess of the volumetric working space using certain techniques. Second,
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the guessed boundary values are used as boundary conditions, and additional con-

straints are enforced according to the original data. Third, the sytem performs

iterative finite-difference techniques to get an approximated solution for the en-

tire working space based on these constraints. After that, direct manipulation and

local sculpting inside the working space can be enforced by adding additional con-

straints to the PDEs. Variational interpolating approaches are good candidates for

shape reconstruction from scattered points, such as the RBF method [99, 146] that

creates a 3D implicit function to give an approximation interpolating given con-

straints by minimizing certain energy functional. This dissertation uses the RBF

method to compute the initial guess of implicit PDE objects defined by sketch

curves. The intensity values on sampling grids can also be calculated using their

distance to the constraints, because implicit objects can be defined by distance

functions. The algorithm used in this dissertation to compute the distance field is

the fast-tagging approach proposed by [161]. Note that, because the goal here is

to obtain an initial guess of the working space according to constraints, there are

other techniques which can provide satisfactory results.

6.3 Radial Basis Function

Radial Basis Function (RBF) is commonly used for scattered data interpola-

tion, which is to generate a smooth surface that passes through a given set of data

points. Scattered data interpolation sometimes can also be addressed using vari-

ational analysis where the desired solution is a function, f(x), which minimizes

certain energy functionals. In principle, the energy functional measures the qual-

ity of interpolation subject to the interpolatory constraints f(ci) = hi. It can be

solved by a weighted sum of certain radial basis functions φ(x) centered at the
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constraint locations. Then the interpolation function can be formulated as:

f(x) =
n∑

i=1

wiφ(x − ci) + P (x), (6.3)

where ci’s are the coordinate vector of the constraints, wi’s are weights, and P (x)

is a polynomial only consisting of the linear and constant portions of f . According

to the properties of the appropriate radial basis functions φ(x) (φ(x) = |x|3 in the

system for 3D space), the interpolation function minimizes the thin-plate energy

while satisfying the data interpolation requirement. Applying the constraints to

(6.3) can provide a linear equation system whose unknowns are the weights and

coefficients of the polynomial P . This system can be solved using standard solvers

of linear equations.

However, the RBF method requires gradient information of datasets, and time

and space complexity of the equation system depends on the number of con-

straints, so it’s not suitable for reconstruction and interactive sculpting of large

scattered datasets with arbitrary constraints. Because the goal here is simply mak-

ing an initial guess for the implicit PDE shape, distance approximation techniques

such as the fast-tagging algorithm which computes the signed distance field of the

working space according to the constraints can give satisfactory results for such

input.

6.4 Numerical Simulation

In order to easily apply additional constraints for direct manipulation of im-

plicit objects, this dissertation resorts to the numerical techniques based on finite-

difference approximation and iterative method for linear equations to solve the im-

plicit PDEs with pre-defined boundary values or approximate initial guess from
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sketch curves/scattered points and arrive at an approximate solution with user-

specified error tolerances. Numerical algorithms also facilitate the material mod-

eling of anisotropic distribution. A multi-grid iterative solver is used to improve

the system performance. By applying the finite-difference technique, a set of al-

gebraic equations for the fourth-order implicit PDE can be achieved:

Gd = b. (6.4)

Similarly, (6.2) can be rewritten as:

G′d = b′, (6.5)

The implicit PDEs are open along all of x, y, and z directions, so forward/backward

instead of central difference approximations shall be utilized for the computation

of partial derivatives near the six boundaries. Arbitrary boundary/additional con-

straints can be easily enforced using the finite-difference method. In the PDE

modeling system, after making the initial guess of intensity distributions of the

working space, intensity values at those boundaries can be fixed, so that manip-

ulations on implicit objects can be performed using the finite-difference iterative

solver. In general, this type of elliptic PDEs allows designers to choose (various)

constraints based on diverse design tasks.

6.5 Constrained System

One attractive advantage of PDE modeling techniques is that the interior of

objects is controlled by PDEs without the need of extra specification for interior

material distribution. More importantly, users can modify an implicit PDE ob-

ject by enforcing additional hard constraints of desired intensity values anywhere

inside the working space without violating previously defined conditions. Such
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additional hard constraints introduce a set of new equations into the system to re-

place the corresponding original difference equations. For example, if users want

to set the intensity value d(i,j,k) as d0, the equation d(i,j,k) = d0 will be used to re-

place the d ifference equation at the point {i, j, k}, i.e., G(i,j,k)(i,j,k) = 1, all other

G(i,j,k)(i′,j′,k′) = 0, and b(i,j,k) = d0. After replacing all the equations according to

the constraints, (6.4) becomes

Gcd = bc, (6.6)

where Gc and bc are obtained by replacing k(k > 0) equations in the original

system with those derived from additional k constraints. (6.4) and (6.6) can be

solved using iterative methods.

The constrained system for the second-order (6.5) has the similar form:

G′
cd = b′

c, (6.7)

(a) (b) (c) (d)

Figure 6.1: 2D illustrations of different types of boundary conditions. (a) Tra-

ditional boundary constraints; (b) boundary conditions for shape blending; (c)

sketch-curve constraints; (d) scattered-point constraints.
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6.6 Boundary Conditions for Different Applications

To construct an implicit PDE object, first users need to outline the rough shape

of the object, which can be defined through boundary conditions or special con-

straints such as curve contours and scattered data points in the working space

that the object interpolates. The form of boundary constraints varies for different

applications. The implicit PDE technique accepts boundary conditions for appli-

cations such as shape blending, object recovery, and shape reconstruction from

sketch curves and scattered data points. Fig. 6.1 illustrates different types of

boundary conditions in simplified 2D cases.

6.6.1 Shape Design Using Traditional Boundary Constraints

The implicit PDE technique can model geometric shapes by computing the

information of the whole working space based on traditional boundary constraints

with optional cross-sectional details inside the working space. Such boundary

conditions are defined as intensity values sampled at certain resolution from input

or use some analytic functions to generate implicit boundary functions d(0, y, z),

d(1, y, z), d(x, 0, z), d(x, 1, z), d(x, y, 0), d(x, y, 1) and a collection of cross-

sectional scalar intensity functions d(xi, y, z), d(x, yj, z), or d(x, y, zk), where

xi, yj, zk ∈ (0, 1) are constants. These functions are sampled at specified reso-

lution to provide a set of intensity values inside the working space. Using these

values as generalized boundary conditions introduces certain number of new equa-

tions and the linear equation system has the form of (6.6) or (6.7) which can be

solved using above mentioned techniques. Fig. 6.2 shows examples of the fourth-

order and second-order PDEs, respectively. Although (4.9) takes more time to

solve, it provides higher-order continuity of intensity distributions in the working

space in comparison with results from (6.7).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Examples of implicit PDE objects generated from cross-sectional

boundary conditions. (a) Original object; (b) boundary conditions by removing

several data slices along y-direction from (a); (c) and (d) are recovered fourth-

order implicit PDE objects from (b) by solving (6.1) with b = 1.2 and b = 4.8

respectively; (e) and (f) are corresponding second-order objects.

6.6.2 Shape Blending

The proposed PDE formulations define the interior information of implicit ob-

jects via differential properties, which means that it is possible to automatically

recover the missing information from partial data through the prototype system

and guarantee intensity continuity of non-constrained parts of the working space.

This feature can be applied to shape blending process by placing objects to be

blended into the working space and the system will compute the connecting parts
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Shape blending using implicit PDEs. (a) Original dataset shown in

iso-surface; (b) blended object from (a) using the fourth-order PDE; (c) blended

object using the second-order PDE; (d), (e), and (f) are cross-section views of

working spaces for (a), (b), and (c), respectively.

between those objects. Such kind of datasets form another type of initialization

with pre-defined boundary constraints, which gives most of the information with

only a small portion of the working space missing. The missing information of

the working space can be approximated based on the remaining part using the

PDE formulation. An example of shape blending is shown in Fig. 6.3 includ-

ing blended results using different order PDEs, where the fourth-order blended

shape is smoother than the second-order result. The above two types of boundary

conditions allow the implicit PDE module to model volumetric datasets.

6.6.3 Shape Design Using Sketch Curves

To maximize the modeling potential of implicit PDEs, this dissertation pro-

vides a set of toolkits using the PDE techniques to reconstruct objects from spatial
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Examples of shape reconstruction from sketch curves. (a) A set of

open curves; (b) and (c) are reconstructed iso-surfaces at different iso-values, re-

spectively; (d) a cross-section view for (b) and (c); (e), (f), and (g) show an ex-

ample of generating implicit shapes by incrementally defining a set of B-spline

curves; (e) an object defined by two curves; (f) the refined object by adding two

sketch curves; (g) the shape reconstructed from six B-spline sketch curves; and

(h) a cross-section view.

sketch curves of specified intensity values. Because with this type of constraints,

the boundary information around the working space is missing, it is extremely

difficult to directly solve the implicit PDE under such constraints. Therefore, this

dissertation employs techniques such as the RBF method for the interpolation

problems to obtain an initial guess for the implicit PDE shapes subject to those

constraints. Then the iterative solver is used to get a smooth solution. When per-

forming the RBF method, the gradient information indicating the change of the

intensity values around the constraints will be needed to define the inside and the

outside of the reconstructed shape. If the gradient information is not provided

by users, the PDE modeling system calculates the gradient at each sample point
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of the constraints according to the local tangent plane of the curve in the point’s

neighborhood, as explained in Fig. 6.5. The system also allows designers to inter-

actively input certain sketch curves such as B-spline curves with specified inten-

sity values, which permits the initial sketch curves to be modified directly. Note

that, the sketch curves are not required to be planar curves. The sketch curves can

even be open curves, which may result in open iso-surface instead of solid objects.

Fig. 6.4 demonstrates several examples using sketch curves.

Figure 6.5: Illustration of computing the gradient direction. p1, p2, and p3 are

neighboring points on a discretized curve; n is the normal of their local plane; and

g is the gradient vector for p2.

When modeling more complex shapes from sketch, usually there are a large

number of sketch curves to be enforced, which will increase the number of cal-

culations dramatically. Moreover, sometimes the sketch curves are only designed

to model the local area they resides, so their global contribution are not desirable.

To address such issues, the system allows users to compute the initial guess of im-

plicit PDE objects using the RBF method for the selected subset of sketch curves

at any local region of the working domain without disturbing the outside area. At

the initialization stage, when using RBF method to compute the initial guess of

the implicit shape, users are prompted to select interested curves, define the region

in the working space to reconstruct the subset of the object, as well as indicate if
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curves that only part of them inside the specified area can make contribution to the

reconstruction. After all the sampled intensity values in each of the sub-regions of

the working space are computed, the implicit PDE module can perform a global

blending process to put sub-regions together. This feature can reduce the number

of calculations of the RBF method, and provide fast reconstruction by sculpting

sketch curves. Moreover, CSG sculpting tools can be easily enforced accordingly.

Fig. 6.6 shows an example.

(a) (b) (c) (d)

Figure 6.6: Example for performing the RBF initialization locally. (a) Two set of

sketch curves; (b) and (c) are reconstructed implicit shapes rendered at different

iso-values; (d) a cross-section view.

6.6.4 Shape Reconstruction from Unorganized Scattered Data

Points

Implicit functions are commonly used for shape reconstruction from scattered

data points. In this dissertation, the implicit PDE techniques not only reconstructs

objects from unorganized scattered datasets, but also recovers information of the

entire working space where objects reside, with which direct manipulations of ob-

jects can be easily applied. Similar to sketch curve constraints, intensity values

at boundaries of the working space are unknown. However, for scattered datasets

where the number of constraints is extremely large and there is no gradient infor-

mation available, RBF method is not suitable for computing the initial guess. In
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.7: Examples of shape reconstruction from scattered data points. (b) and

(c) are iso-surfaces at different iso-values of the object reconstructed from (a); (f)

and (g) represent the reconstructed shape from (e) at different iso-values; (d) and

(h) are cross-section views.

such case, the system uses the signed distance field approximation based on the

constraints. The initial intensity values on the sampling grids are computed by the

fast-tagging algorithm introduced by [161] based on their signed distances to the

data point constraints and then iterative solvers are used to conduct a smoothing

task. Two examples are shown in Fig. 6.7.

6.7 Sculpting and Manipulation Toolkits for Implicit

PDEs

The system provides a set of toolkits for global deformation and local editing

of implicit objects.
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6.7.1 Modifying Blending Coefficients

The coefficient functions a(x, y, z), b(x, y, z), and c(x, y, z) can influence the

solution of the implicit PDEs. They control the relative intensity blending and

the level of variable dependence among x, y, and z directions, thus they can

be treated as generalized material properties over the volumetric working space.

Consequently, users can control how the boundary and additional conditions in-

fluence the interior intensity distribution by modifying the length scale of these

functions at arbitrary locations (i.e., ai,j,k, bi,j,k, and ci,j,k). In general, users can

define the control functions a(x, y, z), b(x, y, z), and c(x, y, z) interactively over

the specified grid point {i, j, k}. The system allows users to modify them locally

to deform the shape. Fig. 6.2 has examples of implicit PDE objects subject to

different coefficient values.

6.7.2 Sketch Curve Sculpting

Implicit objects can be defined by specifying a set of sketch curves which

outline their rough shapes. The implicit PDE model provides interactive shape

design toolkits that allow users to manipulate the sketch curves in order to deform

underlying reconstructed implicit objects. The sketch curves defining the rough

shape of the object can be obtained by either pre-defined curve network or B-

spline curves from users’ direct input. The PDE modeling system allows users to

modify the geometric shape, intensity value, as well as gradient directions of the

sketch curves interactively in order to get desired objects.

In order to modify the sketch curves smoothly, B-spline approximations for

those curves are calculated at the initialization stage, then users can sculpt the

curves interactively by manipulating the B-spline control points via sculpting,

translation, and rotation. Because the reconstructed implicit object is required
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to interpolate those sketch curves which define its outlining shape approximately,

it will follow the shape changes accordingly. Fig. 6.8 has an example for sculpt-

ing the shape of a selected sketch curve. The intensity value of a sketch curve

determines where the final shape of the implicit object should pass through at the

level set of its value. By modifying intensity values of selected curves, users can

manipulate the objects accordingly.

Furthermore, according to the gradient definition, intensity values increase

along gradient directions of sketch curves and decrease in the opposite directions

in general. Gradient directions provide information of intensity distributions start-

ing at the sketch curves and propagating to the neighborhood, which defines the

inside and outside of the object. Without the definition of gradient directions,

the PDE solution will be trivial. Therefore, gradient information of sketch curves

is required to reconstruct a unique shape. Accordingly, changing gradient direc-

tions at selected sketch curves means modifying directions of intensity changes in

the implicit working space and will result in different implicit shapes. The sys-

tem allows users to specify the gradient direction of each individual sketch curve

to construct different implicit PDE objects. Refer to Fig. 6.9 for examples of

specifying and modifying gradient directions at sketch curves. Without further

specification, other examples in this chapter have gradient directions point inward

the curves by default.

6.7.3 Local Manipulation of Implicit PDE Solids

Usually the sketch curve sculpting will deform the entire reconstructed shape,

which only offers global manipulation and is less intuitive for ordinary users to

handle. Even with the specification of local areas of interests containing the
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sculpted sketch curve, the sculpting will affect all the points in the selected re-

gions. Moreover, sometimes the input constraints alone can not guarantee a sat-

isfactory solution of the constructed shape. Therefore, direct modification in se-

lected areas is desirable, especially when the overall recovered shape is satisfac-

tory but minor changes in small localized areas are needed. The PDE modeling

system provides interactive tools of the intensity value modification in selected

regions to sculpt the reconstructed shape. The modification will be enforced into

(6.6) or (6.7). Using the aforementioned techniques, (6.6) and (6.7) can be solved

to obtain the modified objects. For local manipulations, only the intensity updates

in the neighborhood of selected regions need to be calculated. The intensity val-

ues are governed through the PDE and the selected regions usually have relatively

small number of grids comparing with the entire working space. The update of

the new intensity values for such regions will be quickly obtained through the

finite-difference solver. Therefore, interactive manipulations for local sculpting

of implicit PDE objects can be easily achieved.

Traditional implicit techniques for data reconstruction do not support direct

manipulations on arbitrary locations in the volumetric working space. Changes on

pre-defined constraints will cause global deformation. It is more desirable to offer

users editing functionalities for the interior properties with interactive interface.

Local Intensity Modification

Besides the local RBF approximation for local sketch curve sculpting, the

system also allows users to specify any interior region of the sampling grids, and

applies intensity changes only within the specified region. Alternatively, users

can freeze the selected region and disallow any changes in the specified region.

In the system, this can be done through interactively specifying the maximum
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and minimum sampling grid in x, y, and z direction of the desired region in the

volumetric working space. Subsequently, any change within the region will have

no influence on sampling points outside the region. The localized deformation can

be easily achieved because only those equations corresponding to the points in

specified regions in (4.9) will be solved. In addition, the number of computations

is reduced due to fewer number of equations involved in the local sculpting. In

principle, all hard constraints can be viewed as some sort of local deformation.

Fig. 6.8 shows examples of local deformation.

Iso-surface Sculpting

Users can also specify an iso-surface at a particular intensity value and use a

cutting plane inside the volumetric working space to get a 2D iso-contour on the

plane, then stretch, push, rotate the contour, as well as add desired intensity val-

ues at specified locations to modify the shape of the iso-surface and the intensity

distribution of interested areas. Refer to Fig. 6.8 for illustrative examples.

CSG Operations

The system also offers several CSG sculpting tools such as using spheres and

cubes to trim/extrude/sculpt implicit objects by adding more constraints on the

sampling grids of the working space. This is extremely useful for such situations

when there are some minor changes needed to be done in some local small re-

gions. Such sculpting tools make our system compatible with CSG-based implicit

models by treating those models as modeling tools. Examples are shown in Fig.

6.8.
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Gradient Constraints

The intensity gradient ∇ at a point (x, y, z) in the intensity field can be defined

as

∇d(x, y, z) = (
∂d(x, y, z)

∂x
,
∂d(x, y, z)

∂y
,
∂d(x, y, z)

∂z
).

By applying the finite-difference technique, the gradient vector ∇di,j,k at a dis-

cretized grid point {i, j, k} can be approximated as:

(
di+1,j,k − di−1,j,k

2∆x
,
di,j+1,k − di,j−1,k

2∆y
,
di,j,k+1 − di,j,k−1

2∆z
).

It provides information about intensity changes in the neighborhood of (x, y, z) in

the working space. Therefore, changing the direction and length of the gradient

vector of a selected grid point will affect the intensity distribution in its neighbor-

hood, and as a result, deform the object. The implicit PDE module allows users

to pick a point inside the working space, specify the local region surrounding the

point, and modify its gradient vector interactively, then the shape bounded by the

specified local region will be deformed accordingly (refer to Fig. 6.10 and Fig.

6.11(a)).

Curvature Constraints

The mean curvature at point (x, y, z) in the intensity field can be computed

from the divergence of the intensity gradient of (x, y, z), i.e. ∇·∇d(x, y, z) [119].

In the discretized form, it can be approximated as ∇ ·∇di,j,k. Its definition is also

related to intensity values of the point’s neighbors. By changing the curvature

value at a point, the shape of the object will be changed. The system allows users

to manipulate the curvature at a selected grid point for implicit shape deformation.

Fig. 6.11 shows examples.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.8: Examples of enforcing curve and direct manipulation constraints. (a)

Original object with sketch curves; (b) deformed object by sculpting a selected

curve; (c) changing an iso-contour; (d) deformed object subject to local region

constraints; (e) adding a sphere in the working space; and (f) is the corresponding

deformed object subject to (e); (g) adding constraints for an object with sharp

edges; (h) and (i) are two trimming examples.
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(a) (b) (c) (d)

Figure 6.9: Examples for manipulating gradient directions of sketch curves. (a)

and (c) are two sets of curves with the same geometric shape but different gradient

directions, where the arrows show intensity increasing directions; (b) and (d) are

the corresponding implicit objects.

(a) (b) (c)

Figure 6.10: Examples of enforcing gradient constraints. (a) Original object with

the gradient vector at a selected point; (b) and (c) are deformed objects by chang-

ing the gradient at the point.

(a) (b) (c)

Figure 6.11: Examples of enforcing gradient and curvature constraints. (a) De-

formed object by changing gradient; (b) and (c) are deformed objects by changing

curvature at a selected point (shown in green) from (a).



Chapter 7

PDE-based Free-Form Modeling

and Deformation

This dissertation has presented a unified dynamic approach that defines solid

geometry of sculptured objects using trivariate elliptic PDEs subject to flexible

boundary conditions. The proposed solid PDE formulation and its associated dy-

namic principle permit designers to directly deform PDE solids whose behaviors

are natural and intuitive subject to imposed constraints. Users can easily model

and interact with solids of complicated geometry and/or arbitrary topology from

locally-defined PDE primitives through trimming operations. The system offers

users various sculpting toolkits for solid design and interactive modification of

physical and geometric properties of boundary surfaces, as well as any interior

parts of solid objects. Furthermore, this dissertation also integrates implicit scalar

intensity information with solid geometry and uses elliptic PDEs to govern both

geometry and density behavior of solid objects. It offers free-form modeling and

deformation for integrated PDE solid objects with density attributes. This work

has been published in Proceedings of Pacific Graphics 2001[45]. Another paper

132
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based on this work is under review for journal publication[48].

7.1 Introduction and Motivation

At present, curve and surface modeling techniques are extensively used for

representing a wide range of geometric shapes. However, such representations

are far from adequate for modeling real-world objects when both interior prop-

erties and dynamic behaviors of the underlying shape are of prime significance

to modelers. Although the use of elliptic PDEs on 2D parametric domain with

physics-based techniques offers interactive and dynamic modeling of PDE sur-

faces and surface displacements, surface representations fall short in modeling

most of the real-world objects where interior geometry and material distribution

are required for both synthesis and analysis processes.

In contrast, solid modeling has emerged as a powerful, convenient, and nat-

ural paradigm for representing, manipulating and interacting with 3D objects in

graphics, animation, CAD/CAM, art and entertainment, scientific visualization,

and virtual environments. It greatly enhances existing surface modeling tech-

niques primarily because a solid model offers engineers an unambiguous shape

representation of a physical entity. In essence, the CAD-based solid representa-

tion of a real-world physical object is both geometrically unambiguous and topo-

logically consistent. There is a wide array of solid modeling techniques [65, 100]

including: Constructive Solid Geometry (CSG), Boundary representation (B-rep),

cell decomposition, and trivariate free-form parametric superpatches. The CSG

approach exploits semi-algebraic sets and Boolean operations on simple primi-

tives such as cubes, spheres, cylinders, cones, and tori to construct more complex

solid models. The B-rep technique typically defines a solid object via a set of its
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boundary surfaces along with extra topological information. The cell decomposi-

tion method usually uses 2D cross-sectional slices or cubical units (e.g., voxels)

to approximate complicated solids with hierarchically structured octree schemes.

Despite many advances in solid modeling during past several decades, conven-

tional solid modeling techniques can be rather rigid and inflexible. Such solid

modeling representation schemes encounter difficulties in interactive sculpting of

solid objects, solid geometry deformation, topology modification, and kinematic

and dynamic analysis of physical solids. In general, prior representations in solid

modeling fall short in offering designers an array of flexible and powerful model-

ing and sculpting tools.

On the other hand, free-form solid modeling combines the benefits of free-

form boundary surfaces and interior geometry within a unified framework. It

provides users more flexible design interfaces for modeling a large variety of ob-

jects. It also facilitates cost-effective algorithms for evaluation and manipulation

of solid geometry. Typical examples of free-form solid models include trivariate

B-splines, Hermite solids and NURBS solids. However, free-form solids such

as trivariate B-splines typically offer users more degrees of freedom (i.e., control

points, weights, etc.) than what they can actually handle. Furthermore, free-form

solids are restrained to model topologically regular shapes. It is difficult to extend

the geometric coverage of free-form solids to shapes of arbitrary topology without

resorting to various non-intuitive geometric constraints.

As for shape manipulation, free-form deformation (FFD) provides efficient

shape deformation for geometric objects. In essence, shape deformation based

on FFD is conducted indirectly by deforming the embedding space in which the

shape is defined. It provides a unique parameterization for the shape to define

its position in the space. When the embedding space is deformed, the embed-

ded shape is deformed accordingly based on its parameterization. One appealing
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advantage of FFD in comparison with other traditional modeling techniques is

that it can be applied to arbitrary geometric object since the embedding space is

independent to the geometric representation and topological structure of the em-

bedded target. In past several decades, FFD techniques are among popular mod-

eling methods for shape modeling and manipulation. Sederberg and Parry [125]

proposed a FFD technique to deform solid objects. They embedded the object

in a parallel-piped lattice structure and mapped it to the deformed lattice using a

trivariate Bezier spline. Later, Coquillart [31] extended their technique as EFFD

by using nonparallel-piped 3D lattices. This EFFD technique offers shape defor-

mation by bending the shape along an arbitrarily shaped curve or adding randomly

shaped bumps to it. Hsu et al.[68] introduced direct manipulation of B-spline

FFD which used least squares to calculate the control points of B-spline FFD

based on the direct movement of objects. MacCracken and Joy [93] introduced

a subdivision-based FFD technique that uses Catmull-Clark subdivision volumes.

An underlying model can be deformed by embedding the model into the converg-

ing sequence of lattices and then tracking new positions of the model according to

the deformed lattice sequences The subdivision-based FFD offers a broader range

of shape deformations under various control volumes. However, the definition of

control volumes is laborious and difficult. Singh and Fiume [132] presented a geo-

metric deformation technique called ”wires” to deform objects using space curves

and implicit functions. Crespin [32] presented a FFD technique using deformation

primitives. The primitives provided deformations on associated parts of an object.

Then the deformations are combined together by associated blending functions.

Recently, Schmitt et al.[121] introduced a shape-driven technique for functionally

defined heterogeneous volumetric objects. Hua and Qin [71] presented a scalar-

field-based free-form deformation (SFD) technique by establishing deformation
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methods defined on implicit scalar fields instead of constructing a mapping func-

tion from geometric deformation primitives. However, the FFD-based techniques

to model complex objects require large number of control vertices to define their

embedding space. To achieve arbitrary shape deformation, they need complex

operations on these control vertices.

By taking advantages of the boundary-value elliptic PDEs, PDE solid model

can effectively model objects through the use of certain elliptic PDEs of u, v, w

with only a few boundary conditions. In principle, PDE solids can be recon-

structed from a small set of heterogeneous boundary conditions. The solids’

interior information will be automatically provided by solving the given PDEs.

Hence, fewer parameters are required than those of free-form or subdivision solids.

PDE solids offer a powerful solid representation with combined advantages of

conventional solid modeling techniques, such as spline-based behavior, bound-

ary surface representations, and underlying parameterization for (generalized) cell

decomposition in the interior. Therefore, PDE solids have potential to integrate

CSG, B-rep and cell decomposition into a single framework. Furthermore, be-

cause PDE solids offer mapping between parametric space and physical space,

natural FFD operations can be easily provided for embedded objects inside the

PDE solid working space. PDE solids can also unify both geometric and phys-

ical aspects for real-world models. Various heterogeneous requirements can be

enforced and satisfied simultaneously. They are invaluable throughout the entire

modeling, design, analysis, and manufacturing processes.

However, besides simple geometric conditions enforced over PDE solid bound-

aries, there is no formal mechanism for the direct editing of PDE solids anywhere

across their domain in prior work of PDE solids. Traditional elliptic PDE solids

are only computed from a set of regular boundary surfaces. More flexible and gen-

eral boundary constraints are yet to be addressed. Conventional PDE techniques
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are unable to support localized geometric operations for solid models. Global

control is less intuitive to manipulate. Despite the great potential to integrate dif-

ferent techniques such as CSG, B-rep, cell decomposition, and free-form solids,

previous PDE solid techniques only make use of boundary information and many

interior properties and features have not yet been considered. The FFD features

of PDE solid geometry haven’t been facilitated. In addition, previous PDE solid

models seek for analytic solutions based on Fourier transforms, which don’t have

enough degrees of freedom for designers to design and manipulate solid objects.

Numerical techniques, in contrast, provide numerical discrete approximations for

solid PDEs and allow the enforcement of arbitrary constraints including point in-

terpolation and manipulation constraints and other functional requirements. They

also make it possible to incorporate physical and material properties into the PDE

solid framework.

To further broaden applications of PDE techniques in geometric and visual

computing, this dissertation extends PDE solid techniques for more general PDE-

based free-form modeling and deformation with interactive manipulations. In the

framework, PDE solids are associated with geometric shapes, physical properties,

and intensity attributes at the same time. The PDE solid geometry can be defined

by boundary surfaces or a set of boundary curve networks. Geometric manipula-

tion toolkits for boundary surface sculpting, local control and trimming operations

using simple CSG tools and user-specified datasets are offered to obtain arbitrary

topological shapes. The interactive sculpting and manipulation can be accom-

plished by integrating PDE solids with physics-based modeling techniques, which

will offer users intuitive editing toolkits for solid modeling. Furthermore, the im-

plicit PDE is incorporated into the parametric PDE solid formulation to govern

intensity attributes of solid objects. This integration augments free-form shape

modeling and deformation based on PDE solids with implicit properties. The
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unified PDE framework provides arbitrary deformation of solid objects with para-

metric geometry and implicit intensity distributions. With modeling properties of

both implicit PDEs and parametric PDE solids, the integrated PDE formulation

can model, blend and deform objects with arbitrary topology.

7.2 PDE Solid Formulation

7.2.1 Formulation of PDE Solid Geometry

Bloor and Wilson [16] initially employed the second-order elliptic PDE (2.7)

to construct PDE solids. However, direct manipulation of PDE solids defined by

boundary surfaces is lack from their work. To allow users to directly modify PDE

solid objects, direct control of boundary surfaces is more desirable. In order to

make previously-developed fourth-order elliptic PDE surface sculpting techniques

available for solid modeling, this dissertation employs the fourth-order elliptic

PDE to formulate parametric solid geometry:

(a2(u, v, w)
∂2

∂u2
+ b2(u, v, w)

∂2

∂v2
+ c2(u, v, w)

∂2

∂w2
)2X(u, v, w) = 0 (7.1)

where a(u, v, w), b(u, v, w) and c(u, v, w) are coefficient functions of u, v, and w

that offer local control for the behavior of PDE solids. The constant smoothing

coefficients a, b, and c in (2.7) are replaced by arbitrary functions over u, v, and w,

to offer users more flexibilities for interactive manipulation. Usually they are set

to be constant values over the parametric domain except those regions of interest

during the manipulation process.

To solve (2.7) and (7.1), at least six boundary conditions are required in order

to derive a unique solution. This dissertation restrains u, v, w to vary between 0

and 1, because reparametrization does not change the PDE solid geometry if u, v,
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or w belongs to [a, b]. The six boundary PDE surfaces define three surface pairs

on the solid boundaries at u = 0, u = 1, v = 0, v = 1, w = 0, and w = 1

are in the form of (2.8). These six surfaces may share corresponding boundary

curves with each other, and they are all open surfaces along their boundary curves.

Furthermore, because a PDE surface can be derived from a set of Coons-like or

Gordon-like boundary curves, boundary conditions in the form of arbitrary curve

network are also possible to uniquely define PDE solids. A same order of elliptic

PDE is used to model boundary surfaces of PDE solids. Thus the corresponding

PDE boundary surface formulation for (2.7) has the following form:

(b2
1(u1, u2)

∂2

∂u2
1

+ b2
2(u1, u2)

∂2

∂u1∂u2

+ b2
3(u1, u2)

∂2

∂u2
2

)X(u1, u2) = 0, (7.2)

where (u1, u2) ∈ {(u, v), (u,w), (v, w)}. The boundary surface formulation for

fourth-order PDE solids has a similar form of (4.1).

The boundary curves to define a PDE solid have the following form:

X(u, vi, wj) = Uij(u),X(uk, v, wl) = Vkl(v),X(ur, vs, w) = Wrs(w). (7.3)

This type of general and arbitrary boundary conditions provide users more

flexible tools to model solid objects with fewer parameters, and are capable of

modeling solids that must pass through a set of curves that serve as general con-

straints.

Similar to (4.4), by using difference equations to approximate the discretized

PDE in u, v, w parametric domain, a set of algebraic equations can be obtained:

GX = z, (7.4)

which can be solved through iterative methods with multi-grid solvers to improve

the time performance of the system.
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7.2.2 Formulation of PDE Solid with Intensity Attributes

The same PDE for parametric PDE solid geometry can also be used to govern

the intensity properties associated with solid objects. Similar to (7.1), the corre-

sponding fourth-order PDE to model both geometry and scalar intensity attributes

of the PDE working space has the following form:

(a2(u, v, w)
∂2

∂u2
+ b2(u, v, w)

∂2

∂v2
+ c2(u, v, w)

∂2

∂w2
)2P(u, v, w) = 0, (7.5)

where P(u, v, w) = [X(u, v, w), d(u, v, w)]�, a(u, v, w), b(u, v, w), and c(u, v, w)

are blending coefficient functions. To offer users more degrees of freedom when

modeling the integrated PDE objects, the system formulates the blending coeffi-

cient functions to have different controls on geometry and intensity attributes, i.e.,

the coefficient functions can be defined as follows:

a(u, v, w) = (
ag(u, v, w) 0

0 ad(u, v, w)
),

b(u, v, w) = (
bg(u, v, w) 0

0 bd(u, v, w)
),

c(u, v, w) = (
cg(u, v, w) 0

0 cd(u, v, w)
).

Using this formulation, (7.1) can be viewed as a special case where the inten-

sity component d(u, v, w) is constant across the entire working space.

(7.5) can be discretized and approximated using the same finite-difference

scheme:

G”P = s, (7.6)

and (7.6) can be solved using similar techniques for (7.4).
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7.3 Physics-based Modeling of Free-Form PDE Solids

Figure 7.1: Mass-spring network for the discretized PDE solid.

This dissertation also employs the integrated mass-spring model of PDE ob-

jects whose dynamic behavior is governed by (4.6). In general, a continuous dy-

namic solid can be discretized into a collection of mass-points connected by a

network of springs across nearest neighbors (and/or along both diagonals). Other

springs can be incorporated into the discretized solid if certain types of dynamic

behavior are more desirable. A mass-spring model is used because of its simplic-

ity and efficiency. Fig.7.1 shows the illustration of the solid mass-spring model

which attaches mass points to geometric grids and adds springs between immedi-

ate neighbors on the PDE discretization along u, v, and w. The external force f

can be computed based on various additional constraints. The PDE model can be

dynamically manipulated with forces by solving

(2M+∆tD+2∆t2K+2∆t2G)Xt+∆t = 2∆t2(z+f)+4MXt−(2M−∆tD)Xt−∆t.

(7.7)

The behavior of the dynamic PDE solid is controlled by both of the Lagrangian

equation of motion and the given PDE with boundary and additional geometric

constraints. The movements of sample points of the integrated mass-spring PDE
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solid model under sculpting are decided by the PDE with constraints, mass, damp-

ing distributions of points, as well as the stiffness of the springs connecting those

points. This hybrid formulation permits users to obtain a solid that satisfies both

geometric criteria and functional requirements at the same time.

7.4 Multi-Grid Approximation for PDE Solid

(7.4) can be solved using finite-difference methods. The large number of

sample points of a PDE surface/solid results in the slow convergence of iterative

techniques. The multi-grid approximation based on simple subdivision schemes

is used to improve the computation performance. Since there are two types of

boundary conditions, i.e., curve network and surfaces, different multi-grid ap-

proximation schemes are employed to handle two types of boundary constraints,

respectively.

If boundary conditions come from curves, boundary surfaces shall be first

computed. This can be done by starting with a small number of sample points at

the coarsest resolution of PDE boundary surfaces, and the approximate solution of

PDE surfaces can be easily derived after several iterations. Then, the PDE solid at

the coarsest resolution is solved. Users can refine the coarse mesh through subdi-

vision and use the new subdivided mesh as an initial guess for subsequent iteration

steps. The finer grid is then computed iteratively to achieve a more accurate and

smoother solution of boundary PDE surfaces as well as the PDE solid. For fur-

ther refinement over the finest grid, the multi-grid approximation starts with the

up-sampling of all boundary curves through the use of four-point interpolatory

subdivision scheme [52] in order to guarantee the smoothness requirement of re-

fined curves.

If boundary conditions come from connected surfaces, the approximation scheme
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should be slightly modified. The process starts with the coarsest resolution of

boundary surfaces through down-sampling to obtain a coarse solution of the solid.

Then during the refining process, more points are sampled over boundary surfaces

until it reaches the finest resolution. After that, the subdivision process may con-

tinue to reach even finer resolution. In this scenario, the given boundary surfaces

are considered as constrained PDE surfaces, requiring four curves as boundary

conditions and the originally defined surface sample points as hard constraints.

Then the four-point interpolatory subdivision scheme is used to subdivide bound-

ary curves and compute unknown surface points by solving the surface PDE sub-

ject to subdivided boundary curves and hard-constrained original surface points.

7.5 Interactive Editing Toolkits for Free-Form PDE

Solids

This dissertation expands the PDE-based modeling system to provide users

direct manipulations and trimming operations for PDE solid models as well as

free-form deformation of arbitrary objects.

7.5.1 Solid Geometry Initialization

The system supports two types of initialization for the PDE solid geometry,

i.e., initial boundary surfaces, or initial boundary curves. At the start of the ini-

tialization phase, users must specify the boundary type, i.e., whether the boundary

conditions are given as pre-defined surfaces, or connected boundary curve net-

work for the PDE solid.

For initialization with pre-defined boundary surfaces, the system can obtain

the already defined surfaces that are patched together and form the outline of PDE
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solid from file or use previous techniques to generate PDE surfaces. Then using

the surfaces as boundary conditions, a PDE solid bounded by these surfaces can

be obtained as the solution of (4.4). Fig. 7.2 shows two examples.

(a) (b) (c) (d)

Figure 7.2: PDE solid examples generated from given boundary surfaces. (a)

and (c) are two sets of boundary surfaces; (b) and (d) are the corresponding PDE

solids (displayed using transparent material) subject to (a) and (c) with embedded

datasets, respectively.

If users decide to employ the curve network as boundary conditions, there will

be at least 12 curves required to define the Coons-like boundary conditions for

the six boundary surfaces. There are two steps in this case: (1) derive boundary

surfaces from the boundary curves users specified by solving (4.4); (2) solve (7.4)

to obtain the corresponding PDE solid. The system uses Coons-like boundary

conditions for the boundary curve network because every two neighboring sur-

faces share one boundary curve. To make sure the solved PDE surfaces satisfy

such conditions, the shared boundary curves need to be defined. The boundary

surfaces can be even defined more precisely by adding more curves as bound-

ary conditions, which leads to the Gordon-like boundary conditions of boundary

surfaces. Fig. 7.3 shows examples of curve network as boundary conditions.

The large number of sample points of a PDE surface/solid results in the slow
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(a) (b) (c) (d)

Figure 7.3: Examples of PDE solids subject to boundary curve network. (a)

Coons-like boundary curves; (b) the corresponding PDE solid; (c) Gordon-like

boundary conditions, and (d) the PDE solid subject to (c). The PDE solids are

displayed using transparent material with embedded datasets.

convergence of iterative techniques. The system employs a multi-grid approxi-

mation based on simple subdivision schemes to improve the computation perfor-

mance.

7.5.2 Boundary Manipulation

Users can modify the global shape of a PDE solid through boundary manipu-

lation. The system permits users to directly modify boundary surfaces using the

afore-mentioned PDE surfaces sculpting toolkits, then eventually define the PDE

solid. To modify a PDE solid through boundary conditions, users must select a

boundary surface for the editing purpose, then use the sculpting toolkits provided

by the PDE modeling system to modify the selected surface. Fig. 7.4 shows two

examples of boundary manipulation with curve constraints. The operations of

boundary PDE surfaces provide a way for direct manipulations of PDE solids.
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(a) (b)

Figure 7.4: Modifying PDE solids via curve constraints of boundary surfaces.

7.5.3 Direct Solid Manipulation

One advantage of PDE solids is that the solid interior is controlled by PDEs

without the need of specification on interior material distributions. PDE solids

provide an integrated scheme that not only expands the B-rep method to cover the

interior information but also supports Boolean operations associated with CSG

models. More importantly, users can deform the interior of a PDE solid by en-

forcing additional constraints inside the solid without changing its boundary con-

ditions. The interactive operations inside a PDE solid include local region sculpt-

ing and solid trimming and deformation. This can be done using the same tech-

niques for PDE surfaces, by replacing several equations in (7.4) using additional

constraints to obtain a constrained system:

GcX = zc, (7.8)

Region Manipulation

Traditional PDE solids only support boundary manipulations which lead to

global deformation of the entire solid space. It is more desirable to offer users

editing functionalities on the interior properties with interactive interface. The

system provides a set of toolkits that allow designers to specify any interior region

of a solid, and only enforce local deformation in the selected region. Alternatively,
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the selected region can be fixed and there will be no changes in the specified

region. In the system, this can be done through: (1) interactively specifying a

region in [u, v, w] domain, (2) employing some basic CSG-based tools such as

spheres and cubes to navigate the entire parametric domain to define the region

of interest, or (3) embedding datasets within the PDE solid in order to define the

particular region. Subsequently, any changes within the region will have no effect

on points outside. The localized deformation can be achieved easily because only

those equations corresponding to the points of specified regions in (4.4) will be

solved. In principle, all hard constraints can be viewed as some sorts of local

deformation. Fig. 7.5 and Fig. 7.6 show examples of local deformation.

(a) (b)

Figure 7.5: Directly modify the trimmed PDE solid. (a) A deformed object ob-

tained by moving an interior region; (b) the deforming sequence of objects by

rotating selected regions. The rectangles in the figures show the selected regions.

Solid Trimming

One of the disadvantages of parametric solids is that it is difficult to model ob-

jects of arbitrary topology. Trimming operation offers an alternative way to model

objects with irregular shape. The system offers users trimming functionalities on a

PDE solid for sculpting of arbitrary topological shapes. After the region of interest

is selected, users can remove material from the PDE solid either inside or outside
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Figure 7.6: Directly modify a point on the trimmed PDE solid. The red point is

selected.

the specified region. Multiple selected regions are also supported in the system,

permitting the trimming on multiple regions simultaneously. Furthermore, ac-

cording to the idea of CSG models, simple shape primitives such as sphere, cube,

or cylinder, can be placed at any position inside the parametric domain as trim-

ming tools, then users can move the shapes along the u, v, or w directions, and all

the regions covered by their navigating path will be chosen/discarded according

to the specified Boolean operations. Such tools allow the CSG construction of

complex objects based on PDE solids. Fig. 7.7 shows trimming examples.

(a) (b)

Figure 7.7: Examples using CSG trimming operation in a PDE solid. The trimmed

parts are shown in red covered by transparent original solids.
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7.5.4 Geometric Free-Form Deformation

Because the trivariate PDE provides a mapping between the parametric space

and physical space, it’s straightforward to use the PDE for FFD applications. The

idea comes from trimming operations and the region-fixing method introduced

in above sections, i.e., users can embed datasets into PDE parametric domain and

map them to the physical space to obtained deformed shapes. The mapping of em-

bedded datasets to different PDE solids will result in different shapes. In essence,

this is analogous to the principle of FFD, except the transformation between the

parametric space of objects to physical working space where the objects are em-

bedded is governed by an elliptic PDE. The free-form deformation based on PDE

solids can greatly expand the coverage of PDE solid applications, making it pos-

sible to obtain PDE-governed free-form modeling and deformation for arbitrary

topological shapes. Fig. 7.8 shows some examples.

(a) (b)

Figure 7.8: Free-form deformation based on PDE solids. In each figure, the object

on the left is obtained by embedding it into a PDE cube, and the object on the right

is obtained from a PDE sphere.
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7.6 Intensity-based Free-Form Modeling and Defor-

mation

To obtain more free-form modeling and deformation features for arbitrary ob-

jects, this dissertation incorporates implicit properties into the PDE solid geom-

etry, i.e., using the PDE formulated in (7.5) to model solid geometry and scalar

intensity attributes at the same time. This integration will provide the modeling

advantages of both implicit models and PDE solids in a single framework and

offer users more degrees of freedom during free-form shape modeling and defor-

mation operations. Manipulation toolkits provided in the implicit PDE module

can be directly applied to model the intensity distribution in the parametric PDE

solid space. The combination of parametric and implicit modeling based on PDEs

has the potential for arbitrary modeling and deformation of geometric objects.

7.6.1 Initialization

To apply the intensity-based free-form deformation, the system needs an ini-

tial PDE working space which defines the geometry and initial intensity value

distribution throughout the space. The solid geometry for the working space can

be defined using initialization techniques introduced in previous sections. As for

the initial intensity value distribution, it can be arbitrary intensity function de-

fined over the parametric domain. In particular, one possible choice to initialize

the intensity field is using the implicit PDE technique introduced in Chapter 6,

which calculates intensity values over the working space based on given embed-

ded datasets. Other pre-defined intensity functions or volume datasets can also be

used as input for initial intensity distributions. Fig. 7.9 shows some examples.

The intensity attributes can be manipulated using modeling toolkits provided by
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the implicit PDE module.

(a) (b) (c) (d)

Figure 7.9: Examples of intensity initialization of PDE solids. (a) and (c) are

embedded in PDE solids with color maps of intensity distribution; (b) and (d) are

cross-section views from z-direction of intensity distributions in the parametric

space.

7.6.2 Free-Form Modeling and Deformation with Intensity Dis-

tribution

The system provides modeling and deformation operations based on intensity

values in the parametric domain to modify objects’ shapes.

Iso-surface Deformation

After the initialization of intensity field for a PDE solid working space, shape

deformation related to both intensity and geometry can be obtained. If the in-

tensity distribution represents certain implicit shape, an iso-surface of this shape

can be calculated using the Marching Cube method at any user specified intensity

value in the parametric domain. The iso-surface can then be treated as an embed-

ded dataset for the parametric PDE solid, and all the editing toolkits for parametric

PDE solids can be employed for direct sculpting and free-form deformation of the
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iso-surface. It offers geometric free-form deformation and directly manipulation

for implicit objects. Fig. 7.10 shows an example.

(a) (b)

(c) (d)

Figure 7.10: Iso-surface deformation. (a) A set of scattered points; (b) implicit

iso-surface obtained from (a); (c) and (d) are deformed iso-surfaces in different

PDE solids.

Free-Form Shape Blending and Deformation

Shape blending between arbitrary geometric objects are not easy for explicit

models because it’s hard to construct correspondence between the blending parts.

However, the implicit PDE module introduced in this dissertation provides a nat-

ural way to blend implicit objects by embedding objects into the implicit PDE

working space. The integration of PDE solid geometry and the implicit PDE can

offer arbitrary shape blending with ease. Moreover, it can unify shape blending

based on the implicit PDE and PDE-based free-form deformation to offer users

more flexible shape blending and deformation for arbitrary objects.

To blend arbitrary geometric shapes, the system first constructs an embedding
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geometric space for each shape to be blended and calculates intensity distribu-

tions for the embedding spaces by the implicit techniques introduced in Chapter

6. Then the embedding geometric spaces and intensity distributions can be used

as boundary constraints for PDE solid geometry and implicit PDE working space

respectively. Solving (7.6) with these boundary constraints will provide a sin-

gle geometric PDE solid working space containing shapes to be blended with a

smoothly blended intensity distribution for the entire working space. The blended

intensity field will provide a smoothly blended shape for input objects. With any

specific iso-value, an iso-surface for the blended shape can be reconstructed ac-

cordingly. At the same time, the constructed PDE solid obtained from the geo-

metric embedding spaces as boundary constraints provides the blended shape ge-

ometry (Fig. 7.11). Moreover, because blending operations are performed based

on intensity distributions in the parametric domain, the system can provide users

different blended shapes for objects embedded in deformed PDE solid working

space. This allows users to obtain the shape blending and deformation at the same

time. It offers more freedom of shape manipulation for objects with arbitrary

topology. Refer to Fig. 7.12 for an example.

(a) (b) (c) (d)

Figure 7.11: Shape blending by integrated PDE solid with intensity. (a) Two

objects to be blended; (b) z-direction view of intensity field of (a); (c) the blended

object embedded in the constructed PDE solid; and (d) z-direction intensity view

of (c).
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(a) (b)

Figure 7.12: PDE-based free-form shape blending and deformation. (a) is two

embedded objects to be blended; (b) is the blending result.

Shape Deformation Based on Intensity Field Modification

The geometric shape of an embedded object in the PDE solid working space

can be deformed by modifying intensity distributions associated with the working

space. When modifying the intensity distribution in the PDE working space, in-

tensity values of the embedded object will be changed accordingly. To preserve

their original intensity values in the modified intensity field, vertices on the ob-

ject will follow the intensity modifications to new locations in the working space,

which will cause deformation of the object’s geometric shape. The PDE-based

free-form deformation techniques allow users to interactively change intensity

values of the working space through the sculpting toolkits of implicit PDE models

in order to deform the object. This can be done as follows. First, after initializ-

ing the intensity field in the PDE working space, the intensity distribution of an

embedded dataset is obtained. Second, users can modify the distribution of the

working space, and new intensity values of the dataset as well as the gradient in-

formation are recalculated according to the modified intensity field. Third, to pre-

serve original intensity values of the dataset, vertices on the dataset are allowed

to move along their intensity gradient directions to locations with their original

intensity values in the modified intensity field. As results, the geometric shape of

the embedded object is deformed. The system allows users to change the intensity
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distribution of the working space locally in selected regions and keep intensity

values of other parts untouched. This will provide local deformation of the object.

The initial intensity distribution of the working space can be either constructed

from the embedded dataset using the implicit PDE technique, or obtained from an

arbitrary implicit function to offer users more degrees of freedom for shape defor-

mation. Fig. 7.13 and Fig. 7.14 have corresponding shape deformation examples

of these two cases. In Fig. 7.14, the implicit function has the form:

d(x, y, z) = e−(σx(x−x0)2+σy(y−y0)2+σz(z−z0)2).

(a) (b) (c) (d)

Figure 7.13: PDE-based free-form deformation due to intensity changes. (a) An

embedded shape; (b) z-direction intensity view; (c) the deformed object in the

locally modified intensity field; and (d) the corresponding z-direction intensity

view of (c).
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(a) (b) (c)

(d) (e) (f)

Figure 7.14: PDE-based free-form deformation due to intensity changes. (a) and

(b) are embedded objects; (c) z-direction view of intensity distribution obtained

from function d(x, y, z) = e−(σx(x−x0)2+σy(y−y0)2+σz(z−z0)2); (d) and (e) are de-

formed objects when modifying d(x, y, z) by changing σx, σy, x0, and y0 shown

in (f).



Chapter 8

Numerical Techniques for PDEs

There are various methods to solve PDEs, including analytic solutions and

numerical approximations. Although there are many advantages of exact ana-

lytic solutions for PDEs, in most of occasions, they don’t exist due to arbitrary

boundary or initial conditions. In contrast, numerical techniques can guarantee

an approximate solution at user specified accuracy in such situations. Previous

work of geometric PDE modeling mainly seeks for closed-form analytic solu-

tion (e.g., Fourier series functions) in order to explore certain attractive proper-

ties of analytic formulations for shape modeling. However, such methods have

difficulties to handle arbitrary boundary/initial constraints. Although there are

spectral approximation methods to approximate solutions for PDE objects with

general boundary conditions, it’s difficult to enforce additional constraints with

special feature design criteria and modeling requirements which can be easily

obtained using numerical discretization methods. Numerical algorithms also fa-

cilitate the material modeling of anisotropic distribution and its realistic physical

simulation, where there are no closed-form analytic solutions for dynamic PDE

157
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surfaces/solids. The popular numerical methods to solve PDEs include finite-

element method and finite-difference method.

8.1 Spectral Approximations Based on Fourier Trans-

forms

Bloor and Wilson [17] introduced an approximate method whereby approxi-

mate solutions to generate PDEs satisfying associated boundary conditions may

be efficiently calculated in an explicit form. The solutions are expressed in terms

of a finite sum of analytic functions (i.e., closed-form solutions) which individu-

ally satisfy the PDE but not boundary conditions, to which is added a corrector or

remainder term. The solution can be regarded as a spectral approximation to the

solution of the chosen PDE, in which it represents the solution in terms of globally

defined functions which are infinitely differentiable.

They considered the solution of (2.5) over the u, v domain Ω : [0, 1] × [0, 2π],

where v varies 0 → 2π, subject to periodic boundary conditions in the v direction,

i.e., topologically, the surface is like a closed band with the u = 0 and u = 1

isolines forming the boundary curves for the patch. Given boundary conditions in

the form of (2.6), by using the method of separation of variables, the solution of

(2.5) may be written as

X(u, v) = A0(u) +
N∑

n=1

[An(u)cos(nv) + Bn(u)sin(nv)], (8.1)

where the coefficient function An(u) and Bn(u) are of the form

A0(u) = a00 + a01u + a02u
2 + a03u

3, (8.2)

An(u) = an1e
anu + an2ueanu + an3u

2e−anu + an4u
3e−anu, (8.3)

Bn(u) = bn1e
anu + bn2ueanu + bn3u

2e−anu + bn4u
3e−anu, (8.4)
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where an1, an2, an3, an4, bn1, bn2, bn3, bn4 are constant vectors. Note that, each

of the three types of the term, A0(u), An(u)cos(nv), and Bn(u)sin(nv) in (8.1),

satisfies (2.5).

In order to determine the various constants in the solution, they transformed

the boundary conditions (2.6) into finite Fourier series and identified the Fourier

coefficients with values of An(u) and Bn(u) as well as their derivatives with

respect to u at u = 0 and u = 1.

However, if boundary conditions are not expressible as finite Fourier series,

the solution in the form of (8.1) will be infinite series (N = ∞) and not suitable

for practical use. Therefore, Bloor and Wilson proposed the spectral approxima-

tion method to deal with more general boundary conditions. The basic idea is to

approximate the solution by:

X(u, v) = F(u, v) + R(u, v), (8.5)

F(u, v) = A0(u) +
N∑

n=1

[An(u)cos(nv) + Bn(u)sin(nv)], (8.6)

where N is finite (usually N = 5), R(u, v) is a remainder term, which represents

the contribution of high frequency modes to the surface and is negligible over

most of the patch if N is large enough. R(u, v) is chosen to be:

R(u, v) = r1(v)ewu + r2(v)uewu + r3(v)e−wu + r4(v)ue−wu, (8.7)

where coefficient functions r1(v), r2(v), r3(v), and r4(v) are determined by the

difference of F(u, v) and its derivatives with respect to u at boundaries u = 0 and

u = 1 with boundary conditions (2.6).

This method can provide very fast approximate solutions in real time and is

more suitable for general boundary conditions. However, it only provides global

control and couldn’t handle arbitrary additional constraints.
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8.2 Finite-Element Method

The finite-element method was originally introduced in the 1950’s as a method

to calculate elastic deformations in solids. Later the method has been developed

and generalized for all kinds of PDEs. It is the dominating technique for solid-

mechanics problems such as estimating stresses and strains in elastic material

under prescribed loads. Finite-element methods are also commonly applied to

other areas, such as calculations of electromagnetic fields and fluid flows.

The principle of the method is to replace an entire continuous domain by a

number of subdomains in which the unknown function is represented by simple

interpolation functions with unknown coefficients. Thus, the original problem

with an infinite number of degrees of freedom is converted into a problem with a

finite number of degrees of freedom, or in other words, the solution of the whole

system is approximated by a finite number of unknown coefficients. Then a set

of algebraic equations or a system of equations is obtained, and solution of the

boundary-value problem is achieved by solving the equation system. Therefore, a

finite-element analysis should include the following basic steps:

1. Discretization or subdivision of the domain;

2. Selection of the interpolation functions;

3. Formulation of the system of equations;

4. Solution of the system of equations.

Domain Discretization The discretization of the domain, say Ω, is the first

and perhaps the most important step in any finite-element analysis because the

manner in which the domain is discretized will affect the computer storage re-

quirements, the computation time, and the accuracy of the numerical results. In
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this step, the entire domain Ω is subdivided into a number of small domains, de-

noted as Ωe(e = 1, 2, 3, · · · ,M), where M stands for the total number of subdo-

mains. These subdomains are usually called the elements. For a one-dimensional

domain which is actually a straight or curved line, the elements are often short

line segments interconnected to form the original line (Fig. 8.1(a)). For a two-

dimensional domain, the elements are usually small triangles or rectangles (Fig.

8.1(b)). The rectangular elements are best suited for discretizing rectangular re-

gions, while the triangular ones can be used for irregular regions. In a three-

dimensional solution, the domain may be subdivided into tetrahedral, triangular

prisms, or rectangular bricks (Fig. 8.1(c)), among which the tetrahedra are the

simplest and best suited for arbitrary volumetric domains. Note that the linear line

segments, triangles, and tetrahedra are the basic one-, two-, and three-dimensional

elements, respectively.

(a) (b)

(c)

Figure 8.1: Basic finite elements. (a) One-dimensional; (b) two-dimensional; and

(c) three-dimensional.

In most finite-element solutions, the problem is formulated in terms of the

unknown function φ at nodes associated with the elements. For example, a linear

line element has two nodes, one at each endpoint. A linear triangular element
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has three nodes, located at its three vertices, whereas a linear tetrahedron has four

nodes, located at its four corners. For implementation purposes, it is necessary

to describe these nodes. A complete description of a node contains its coordinate

values, local number of the node that indicates its position in the element, and the

global number specifies its position in the entire system.

The discretization of the domain is usually considered a pre-processing task

because it can be completely separated from the other steps. Many well-developed

finite-element program packages have the capability of subdividing an arbitrarily

shaped line, surface, and volume into the corresponding elements and also pro-

vided the optimized global numbering.

Selection of Interpolation Functions The second step of a finite-element

analysis is to select an interpolation function that provides an approximation of

the unknown solution within an element. The interpolation is usually selected to

be a polynomial of first (linear), second (quadratic), or higher order. Higher-order

polynomials, although more accurate, usually result in a more complex formula-

tion. Hence, the simple and basic linear interpolation is still widely used. Once the

order of the polynomial is selected, one can derive an expression for the unknown

solution in an element, say element e, in the following form:

φ̃e =
n∑

j=1

f e
j φe

j , (8.8)

where n is the number of nodes in the element, φe
j is the value of φ at node j of the

element, and f e
j is the interpolation function. The highest order of f e

j is referred to

as the order of the element; for example, if f e
j is a linear function, the element e is

a linear element. An important feature of the functions f e
j is that they are nonzero

only within element e, and outside this element they vanish. The collection of

elements which contain a specific node j forms a patch around node j. Within the

patch, the nodal basis function fj is defined piecewisely by f e
j over each element
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belonging to the patch. Outside the patch, fj is 0. One can define an approximate

or trial solution Φ(x):

Φ(x) =
m∑

i=1

fiΦi, (8.9)

where x = (x1, ..., xl) and m is the number of nodes comprising the entire domain

Ω.

Formulation of the System of Equations The third step, also a major step

in a finite-element analysis, is to formulate the system of equations. In general

there are two methods can be used for this purpose, Ritz method and Galerkin

method. The Ritz method, also known as the Rayleigh-Ritz method, is a vari-

ational method in which the boundary-value problem is formulated in terms of

a variational expression, called functional, whose minimum corresponds to the

governing differential equation under given boundary conditions. The approxi-

mate solution is then obtained by minimizing the functional with respect to its

variables. Galerkins method belongs to the family of weighted residual methods,

which seek the solution by weighting the residual of the differential equation. In

Galerkins method, the weighting function is selected to be the same as those used

for the expansion of the approximate solution. This usually leads to the most accu-

rate solution and is, therefore, a popular approach in developing the finite-element

equations.

This section briefly introduces the Galerkin’s method as an example: for a

general PDE φ(x) = b, a weak form of the solution satisfies∫
Ω

φ(x)v(x)dx =

∫
Ω

bv(x)dx, (8.10)

where v(x) is a weight function to minimize the residual φ(x) − b in a weighted

sense and each choice of v gives an equation.

Then the m unknown numbers of Φi in (8.9) can be determined using m differ-

ent weight functions v to obtain m equations. The weight function can be set the
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same as the basis functions fi. Then there is a Galerkin equation for each v = fi.

Substituting into (8.10), a set of linear equations can be obtained in a matrix form

KΦ = B. (8.11)

Solution of the Equation System The (8.11) can be solved by standard meth-

ods for linear equation systems. Details of the finite-element method can be found

in [136].

8.3 Finite-Difference Method

The finite-difference method divides the 2D or 3D parametric space into dis-

crete grids along parametric directions and transforms a continuous PDE into a

set of simultaneous algebraic equations by sampling the partial derivatives in dif-

ferential equations for each grid point with their discretized approximation. The

algebraic equation system can then be solved numerically either through a direct

procedure or an iterative process for an approximate solution of the continuous

PDE.

(a) (b)

Figure 8.2: The point discretization for finite-difference method. (a) Discretiza-

tion for a 2D surface; (b) discretization for 3D working space.
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Based on Taylor’s expansion of polynomial functions, the first-order and second-

order derivatives of a univariate function can be approximated using the central-

difference approximation f ′(x) = (f(x + h) − f(x − h))/2h, f ′′(x) = [f(x +

h) − 2f(x) + f(x − h)]/h2, where h denotes the spatial interval between neigh-

boring discrete sample points. This can be generalized to all partial derivatives on

bivariate and trivariate PDEs, by dividing the parametric domain into a number

of discretized grids. The partial derivatives respect to each parametric direction

can be approximated by the neighbors along that direction. For example, the 2D

parametric domain for bivariate function f(u, v) can be divided into m and n dis-

cretized points respectively, and the 3D u − v − w domain can be discretized

into l, m, and n grids. Then the bivariate function f(u, v) and trivariate function

g(u, v, w) can be represented by their values at the discrete set of points:

ui = i∆u i = 0, 1, ..., l − 1

vj = j∆v j = 0, 1, ...,m − 1

and
ui = i∆u i = 0, 1, ..., l − 1

vj = j∆v j = 0, 1, ...,m − 1

wk = k∆w k = 0, 1, ..., n − 1

where ∆u, ∆v, ∆w are the grid spacing along u, v, w directions. fi,j is used for

f(ui, vj) and gi,j,k is used for g(ui, vj, wk) (Fig. 8.2) for sake of simplicity.

For the 2D parametric PDE discretization, the finite-difference approximation

of the fourth-order partial derivatives at point {i, j} can be written as:

∂4fi,j

∂u4
=

fi−2,j + fi+2,j − 4fi−1,j − 4fi+1,j + 6fi,j

(∆u)4
,

∂4fi,j

∂v4
=

fi,j−2 + fi,j+2 − 4fi,j−1 − 4fi,j+1 + 6fi,j

(∆v)4
,
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∂4fi,j

∂u2∂v2
=

fi−1,j−1+fi−1,j+1+fi+1,j−1+fi+1,j+1+4fi,j

(∆u)2(∆v)2

−2(fi−1,j+fi+1,j+fi,j−1+fi,j+1)

(∆u)2(∆v)2

,

Similarly, in the trivariate case, the approximate fourth-order partial deriva-

tives at {i, j, k} are as follows:

∂4gi,j,k

∂u4
=

gi−2,j,k + gi+2,j,k − 4gi−1,j,k − 4gi+1,j,k + 6gi,j,k

(∆u)4
,

∂4gi,j,k

∂v4
=

gi,j−2,k + gi,j+2,k − 4gi,j−1,k − 4gi,j+1,k + 6gi,j,k

(∆v)4
,

∂4gi,j,k

∂w4
=

gi,j,k−2 + gi,j,k+2 − 4gi,j,k−1 − 4gi,j,k+1 + 6gi,j,k

(∆w)4
,

∂4gi,j,k

∂u2∂v2
=

gi−1,j−1,k+gi−1,j+1,k+gi+1,j−1,k+gi+1,j+1,k+4gi,j,k

(∆u)2(∆v)2

−2(gi−1,j,k+gi+1,j,k+gi,j−1,k+gi,j+1,k)

(∆u)2(∆v)2

,

∂4gi,j,k

∂u2∂w2
=

gi−1,j,k−1+gi−1,j,k+1+gi+1,j,k−1+gi+1,j,k+1+4gi,j,k

(∆u)2(∆w)2

−2(gi−1,j,k+gi+1,j,k+gi,j,k−1+gi,j,k+1)

(∆u)2(∆w)2

,

∂4gi,j,k

∂v2∂w2
=

gi,j−1,k−1+gi,j−1,k+1+gi,j+1,k−1+gi,j+1,k+1+4gi,j,k

(∆v)2(∆w)2

−2(gi,j−1,k+gi,j+1,k+gi,j,k−1+gi,j,k+1)

(∆v)2(∆w)2

.

Fig. 8.3 gives an illustration for the coefficients of the difference equation

at the point {i, j} for the 2D fourth-order elliptic PDE (2.5) with uniform grid

spacing along both u and v directions and blending coefficient a = 1.

8.4 Iterative Method

The approximate difference equations form an algebraic equation system that

can be easily solved by either direct methods or iterative methods and suitable

for parallel computing. For fine resolution of domain discretization, the number

of difference equations will increase dramatically, which indicates the iterative
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Figure 8.3: The illustration of discretizing differential operator for i, j.

solvers are more realistic choices than direct methods for algebraic equation sys-

tem.

The iterative methods make use of the structure of the sparse matrix on the

left-hand side of the finite-difference equation system. Given an example

AX = b, (8.12)

the matrix A is split into two parts

A = Ad − Ar, (8.13)

where Ad consists of the diagonal elements of A and zeros everywhere else, Ar

is the remainder. Then (8.12) becomes

AdX = ArX + b. (8.14)

The iterative methods start from choosing an initial guess X(0) and then solving

the equations successively by iterating X(s) from

AdX
(s) = ArX

(s−1) + b. (8.15)
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Given boundary conditions of certain PDEs for boundary value problems, one

can compute the initial guess by simple linear interpolation based on the con-

straints. The iteration will stop at X(s) for an approximate solution when the

difference between X(s) and X(s−1) is less than a threshold. Certain variants of

iterative techniques exist for solving the aforementioned linear equations [136].

This dissertation employs the Gauss-Seidel iteration which uses the updated value

of the iteration result at a grid point on the right-hand side of (8.15) as soon as

it becomes available. To further speed up the converging rate of Gauss-Seidel

iteration, the error factor characterized by the difference between the approxima-

tion and the real solution is considered. This leads to the method of Successive

Over-Relaxation (SOR) iteration.

8.5 Multi-Grid Method

The multi-grid method will speed up the convergent rate when solving the

linear elliptic equation systems. Suppose the goal is to solve the linear elliptic

problem

Lu = f, (8.16)

where L is some linear elliptic operator and f is the source term. Discretizing

(8.16) on a uniform grid with mesh size h, the resulting set of linear algebraic

equations is of the form

Lhuh = fh (8.17)

Let ũh denote some approximate solution to (8.17) and uh denote the exact solu-

tion. Then the error in ũh or the correction vh is vh = uh − ũh, and the residual

or defect dh is dh = Lhũh − fh. Since Lh is linear, the error satisfies

Lhvh = −dh. (8.18)
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At this point it’s necessary to make an approximation to Lh in order to find vh, say

v̂h. The next approximation is generated by

ũnew
h = ũh + v̂h.

Approximation LH of Lh can be formed on a coarser grid with mesh size H (e.g.,

H = 2h). Then (8.18) is approximated by

LHvH = −dH , (8.19)

which will be easier to solve due to the smaller size of LH . To define the defect dH

on the coarse grid, a restriction operator R that dH = Rdh is defined. Once a so-

lution ṽH to (8.19) is obtained, a prolongation operator P is needed to prolongate

or interpolate the correction to the fine grid, ṽh = P ṽH . Finally the approximation

ũh can be updated:

ũnew
h = ũh + ṽh. (8.20)

This scheme is called coarse-grid correction. The multi-grid method starts

pre-smoothing by approximating ũh at finest grid, then applies coarse-grid cor-

rection on coarser grid recursively, and performs post-smoothing by computing

ũnew
h to finest grid again.

8.6 Comparison and Discussion

The techniques to solve PDEs introduced in this chapter, including spectral

approximation method, finite-element method, and finite-difference method, have

their own advantages and shortcomings. The spectral approximation methods

can provide fast solutions for parametric PDEs. However, they are focusing on

boundary conditions and global features of the entire parametric domain, while
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local modifications inside the domain cannot be enforced. Thus, they are not suit-

able for interactive manipulations of geometric PDE objects. The finite-element

method and finite-difference method can deal with additional constraints easily

for interactive shape design and sculpting. The finite-element method can pro-

vide numerical approximations for geometric PDEs defined on irregular domain,

however, it’s not as simple and easy to implement as the finite-difference method.

In addition, although traditionally the finite-difference method is only applicable

to regular parametric domain, it can be used in irregular space with the help of

certain parametrization techniques.

Because the finite-difference method is simple to implement and suitable to

most of the PDEs employed in the PDE-based modeling system, This disserta-

tion employs this method with uniform discretizations for different application

modules to offer interactions among these modules. With the finite-difference ap-

proach, flexible boundary conditions and additional hard constraints can be easily

enforced for direct manipulations. Iterative methods are employed to provide fast

approximations under local additional constraints. A simplified version of the

multi-grid method is also used by starting at the coarsest grid to solve the dif-

ference equations by iterative method, and refine the solution to finer grids until

it reaches the user-defined finest resolution. This simplified multi-grid version is

quite easy to implement and guarantees approximate solution under various con-

straints with improved convergent rate of the iterative solvers.



Chapter 9

System Architecture and Results

This dissertation presents an integrated PDE modeling framework for para-

metric surfaces and solids, implicit shapes, and arbitrary polygonal mesh objects.

The PDE-based prototype system offers interactive sculpting and direct manipu-

lations for the PDE-governed objects with a set of global and local deformation

toolkits. This chapter will outline the system structure of the PDE-based mod-

eling system and discuss experimental results. The system is written in Visual

C++ and runs on Windows98/2000/XP. It provides output datasets for POV-RAY

rendering system. The mesh objects used in examples of this dissertation are

provided by 3DCafe. By the representation types of models, the system consists

of four modules to model parametric surface, PDE-governed arbitrary polygonal

meshes, implicit PDE objects, and free-form PDE solids with intensity distribu-

tions, respectively. These modules may have interactions with each other through

data exchanges. Fig. 9.1 shows the structure and functionalities of the prototype

PDE-based modeling system with the relations of these modules.

171
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Figure 9.1: System architecture for PDE-based modeling system.

9.1 Physics-based PDE Surface Module

9.1.1 Overview

This dissertation presents a modeling framework for design and manipulation

of dynamic PDE surfaces. Fig. 9.2 shows a snapshot of the PDE-based modeling

system while manipulating a selected point on a PDE surface. When modeling

PDE surfaces, the modeling toolkits are under the ”Surface Model” in the menu

bar, including surface connection, selection of surface types and boundary types

in the Surface Initialization, direct manipulation, B-spline approximation, as well

as surface displacement sculpting. The left window in the interface is the 3D

view window for PDE surfaces, which can be displayed in wireframe, shaded

surface, and curvature mapping. The window on the upper right can be switched

between X-Y view and U-V discretization grids in parametric domain, and the

selected point on the grid is displayed in red. The window on the lower right can
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Figure 9.2: System interface for the physics-based PDE surface module.

be switched between X-Z view and curvature mapping color index.

The physics-based PDE surface module in the PDE modeling system permits

users to interactively manipulate PDE surfaces/displacements with various con-

straints either locally or globally. Fig. 9.3 shows the structure of the PDE surface

module for physics-based parametric surfaces.

9.1.2 Dynamic PDE Surface Modeling Functionalities

The physics-based PDE surface module provides the following functionalities:

Boundary Conditions. Users can interactively input and edit several types of

boundary conditions defined by cubic B-spline curves or commonly-used analytic

functions, and obtain PDE surfaces satisfying these constraints. Boundary con-

ditions can be modified freely as curve-based constraints. Moreover, the system

offers a multi-grid scheme to improve the time performance when modeling PDE

surfaces.
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Figure 9.3: System architecture of the physics-based PDE surface module.

Displacement Models. To further broaden the applications of PDE method

on parametric surfaces, this dissertation extends the PDE formulation to model

surface displacements, which represent the offsets over the original surface. It

enables the proposed PDE technique to model a large set of surfaces of flexible

topology. The system will switch to model surface displacements by selecting

”Displacement Model” in the ”Surface Model” menu. Displacements can be ma-

nipulated using the interactive sculpting toolkits for the PDE surface.

Dynamic Models. The PDE-based modeling system supports novel physics-

based PDE surface manipulation techniques including: (1) finite-difference dis-

cretization for mass-spring models; (2) multi-grid subdivision for model refine-

ment; and (3) finite-element approximation using B-splines for dynamic surfaces.
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Material properties and dynamic behavior can greatly enhance the interactive ma-

nipulation of conventional PDE surfaces.

Sculpting Tools. The system provides various manipulation toolkits to offer

users the capability of intuitive and interactive sculpting of physics-based PDE

surfaces/displacements. These toolkits include: (1) patching several PDE sur-

faces smoothly; (2) moving (a set of) arbitrary surface points to desired locations;

(3) modifying surface normals at arbitrary points; (4) editing surface curvatures

of arbitrary surface points; (5) changing boundary conditions; (6) modifying the

blending coefficient function (i.e., a(u, v)) associated with the PDE; (7) specify-

ing and enforcing a set of curve constraints; (8) deforming a set of user-specified

regions to desired shapes; (9) freezing any local region(s); (10) applying local op-

erations only on user-selected areas; (11) trimming specified parts of the surface;

(12) direct manipulation on surface displacements; (13) modifying material prop-

erties such as mass, damping, and stiffness distributions locally; (14) computing

the B-spline approximation of PDE surfaces; and (15) directly deforming B-spline

finite elements with forces.

9.1.3 System Performance

Several numerical techniques are employed to solve the PDE surface subject

to various constraints. Table 9.1 summarizes the CPU time of three different

numerical solvers on a PDE surface discretized at different resolutions. Gaussian-

Elimination represents Gaussian Elimination method, Gauss-Seidel stands for Gauss-

Seidel iteration, and SOR stands for SOR iteration. The iteration threshold (0.001)

for the two iterative methods is the sum of the distance between the same point in

successive steps.

Table 9.1 indicates that it is generally very time consuming to solve the PDE
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Grids Gaussian-Elimination Gauss-Seidel SOR(σ=1.25)

15 × 15 0.094 1 0.593

30 × 30 3.187 15.016 6

60 × 60 122.156 64.719 34.391

Table 9.1: CPU time (in seconds) of different solvers for a PDE surface with

different sampling rates.

surface of large sampling grids using direct methods such as Gaussian Elimination

method. The multi-grid subdivision method will allow us to start from a coarse

approximation of the surface at a low discretizing resolution, then apply subdivi-

sion refinement to the coarse sampling level in order to obtain the initial guess for

a finer resolution. The PDE surface at the finer resolution can be approximated

accordingly. The total CPU time of using this method is much less than directly

solving the equation on same discretizing resolutions.

Grids Gauss-Seidel SOR(σ=1.05) SOR(σ=1.15) SOR(σ=1.25)

15 × 15 1 109 0.437 0.593

30 × 30 0.266 0.079 171 0.282

60 × 60 1.1 0.156 0.344 0.5

Table 9.2: CPU time (in seconds) of different iterative methods combined with

multi-grid subdivision for a PDE surface.

Table 9.2 compares the CPU time of using Gauss-Seidel Iteration and SOR

Iteration with the multi-grid subdivision. The system starts solving the surface at

the sampling grid 15 × 15. The total CPU time to obtain a solution through the

iterative approaches at selected grid is the sum of the numbers from the coarsest

level to the current level in the same column. The last three columns record time

performance of SOR iteration with different values of σ. The choice of σ will also
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influence the convergent speed of the SOR iterative solver.

Grids Gauss-Seidel SOR Point Normal Curvature Curve Patch

15 × 15 1438 756 253 146 447 497 102

30 × 30 1751 838 420 146 494 1681 457

60 × 60 4000 1583 933 146 190 3504 2000

Table 9.3: Number of iterations for various manipulation techniques with differ-

ent sampling grids. The threshold (0.001) is the sum of all distance between the

corresponding points in successive steps.

Table 9.3 details PDE surface examples and their performance under the two

iterative methods. Point, Normal and Curvature stand for the point, normal, and

curvature manipulations, respectively. Curve denotes curve editing with 20 sam-

pling points, while Patch stands for the regional manipulation of 10×10 sampling

points attached to a B-spline patch. Note that, it generally takes more iterations

on a coarse sampling grid, however, the CPU time spent on the coarser grid is far

less than that on the finer grid.

Surface B-spline µ1 γ1 µ2 γ2 ρ ∆t

Fig. 4.18(a) N/A 20 70 70 20 100 0.1

Fig. 4.18(b) 9 × 9 20 70 70 20 100 0.1

Table 9.4: The parameters of physical properties on dynamic surface examples.

Table 9.4 summarizes the physical parameters used in examples of the mass-

spring model as well as the B-spline approximation for mass-spring PDE surfaces

shown in Fig. 4.18. µi, γi represent the mass and damping distribution for the

surface (µ1, γ1 for yellow parts, and µ2, γ2 for the pink parts). ρ represents spring

stiffness distribution on the surface. The sampling grids of the surfaces are 30×30.



9. SYSTEM ARCHITECTURE AND RESULTS 178

Besides traditional boundary conditions of PDE techniques, the system al-

lows users to specify and enforce a large variety of additional constraints on a set

of points, cross-sectional curves, and surface regions. These constraints provide

more freedom of control to designers, making the design process of PDE surfaces

more cost-effective, natural, and intuitive. The physics-based PDE surface module

is developed using both finite-difference and B-spline finite-element techniques.

The advantages of these approximation techniques are that they are simple, easy to

implement, and suitable for the incorporation of complicated, flexible constraints.

On the other hand, the time and space complexity are increased correspondingly

with higher resolution as well as increased accuracy. The convergent rate of the

iteration depends on initial values. The multi-grid subdivision method for various

levels of refinements achieves anticipated results in the experiments.

9.2 PDE-based Arbitrary Mesh Modeling Module

9.2.1 Overview

Fig. 9.4 is a system snapshot while manipulating vertices on an input polygo-

nal mesh. The PDE-based mesh modeling module can be turned on by selecting

Arbitrary Mesh under the ”Model” in the menu bar. The sculpting toolkits are

under the ”Mesh Model”. The mesh modeling module offers PDE-based direct

manipulation of polygonal meshes and displacements and broadens the elliptic

PDE applications to modeling surfaces of arbitrary topology. It also provides a

diffusion-based medial axis extraction method which combines the grassfire flow

simulation and diffusion propagation to approximate skeletons for objects whose

boundary surfaces are polygonal meshes. It offers an alternative but natural way

for medial axis extraction for commonly used 3D polygonal models. By solving
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Figure 9.4: System Interface for the PDE-based arbitrary mesh modeling module.

the PDE along time axis, the system can not only quickly extract diffusion-based

medial axes of input meshes, but also allow users to visualize the extraction pro-

cess at each time step. In addition, the module provides users a set of manipulation

toolkits to sculpt extracted medial axes, then uses diffusion-based techniques to

recover corresponding deformed shapes according to their original input datasets.

This skeleton-based shape manipulation offers a fast and easy way for animation

and deformation of complicated solid objects. Fig. 9.5 outlines this part of work

in the PDE-based modeling system.

9.2.2 PDE-based Manipulation Toolkits for Arbitrary Meshes

The PDE-based arbitrary mesh modeling module provides users a set of inter-

active toolkits for direct shape manipulation, local/global medial-axis extraction,
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Figure 9.5: System architecture for PDE-based arbitrary mesh modeling module.

and skeleton-based shape manipulation and recovery, etc. The summarized sys-

tem functionalities are listed as follows: Direct Manipulation of Mesh Surfaces

and Displacements. The system uses umbrella operator to approximate partial

derivatives in elliptic PDEs and the interactive deformation of polygonal meshes

can be governed by the PDEs for smooth results. Users can direct manipulate the

surface for desired shape.

Progressive Diffusion-based Medial Axis Extraction. Finite-difference tech-

niques are used to approximate the solution for the time-dependent diffusion-

based equation numerically, which can provide users progressive results and vi-

sual feedback for medial axis approximation and shape reconstruction.

User Interaction for Medial Axis Extraction. During the extraction pro-

cess, users can interactively select any points on the propagating surface to be
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skeletal points, thus they can define the user-controlled skeleton based on their

own criteria. This can provide more degrees of freedom for skeleton-based shape

manipulation.

Local Region Skeletonization. Users are allowed to select local regions in

the 3D working space and the system will only extract skeleton for parts of the

object residing in selected regions. This will reduce the time complexity for shape

skeletonization of complex models and enable the mechanism for direct user con-

trol.

Curvature Manipulation. Gaussian curvature of polygonal surfaces works as

the threshold for diffusion-based medial axis extraction to decide which surface

points will be skeletal points. The module allows users to define the threshold

themselves and obtain the medial axis for an object according to their own criteria.

Skeleton-based Shape Sculpting. The module allows users to directly ma-

nipulate the medial axis, then propagate the deformation to the original dataset

according to the distance information. The shape deformation/manipulation and

other processes based on medial axis alleviate the burden of tedious and less in-

sightful operations for deforming and animating complex objects, as well as other

shape queries and interrogations.

9.2.3 Discussion of Diffusion-based Medial Axis Extraction

The diffusion-based formulation naturally unifies the thinning process along

surface normals with surface smoothing for the propagating fronts. It provides

satisfactory results for irregular meshes. The diffusion-based technique expands

the conventional notion of medial surface as it allows direct user control for shape

skeletonization. In addition, the module allows users to obtain a sequence of
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simplified shapes satisfying different design requirements and offers shape ma-

nipulations through skeleton sculpting. The examples shown in this dissertation

are provided by 3D CAFE and rendered using POV-RAY.

Example Points ∆t Time (seconds)

Fig. 5.1 (a) 2782 0.05 61.790

Fig. 5.1 (b) 909 0.05 17.267

Fig. 5.1 (c) 3749 0.05 136.398

Fig. 5.1 (d) 3162 0.05 252.801

Fig. 5.5 867 0.05 96.175

Fig. 5.6 855 0.05 38.098

Fig. 5.7 (a) 386 0.05 21.121

Fig. 5.8 1149 0.05 35.198

Fig. 5.9 1545 0.05 31.326

Fig. 5.10 1672 0.05 121.201

Fig. 5.11 309 0.05 15.001

Table 9.5: CPU time in seconds for medial axis extraction.

Table 9.5 summarizes the CPU time on a Pentium M 1.3GHz laptop for medial

axis extraction of the examples, where ”Points” stands for the number of surface

points for the dataset, ∆t is the time step value used in (5.9), and ”Time (seconds)”

is the CPU time for approximating the medial axis. Because the diffusion equation

is discretized to approximate the medial axis, the computing time is depending on

the size and complexity of the dataset as well as the time step used to solve (5.9)

iteratively. In addition, the performance of the collision detection also depends on

the resolution of the object.

The diffusion-based method offers smooth approximations of medial axes in a
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visually progressive way. For complex objects bounded by polygonal meshes, the

real medial axes may have numerous noisy branches to preserve objects’ features.

Such structures are difficult to manipulate for shape sculpting. In contrast, the

proposed technique provides simplified approximations for medial axes, which

are smooth thin sets residing inside objects without noisy branches. The approx-

imated results are smoothed because of the Laplacian operator, which eliminates

noisy branches of the real medial axis, so that the resulting medial axis is relatively

simple and easy to manipulate. In addition, different with previous techniques,

this method allows user interaction during the medial axis extraction process,

which provides more degrees of freedom for shape skeletonization and manip-

ulation. For example, if users are not satisfied with the results, they can define

medial axes according their own criteria by selecting skeletal points for medial

axes. The approximated medial axes by user interaction along with distance in-

formation to original objects and the diffusion-based propagation technique can

produce satisfactory results for sculpting and manipulating objects.

Because the proposed medial axis extraction algorithm is applied directly to

arbitrary polygonal meshes, the resolution of meshes and the point distribution

on meshes will affect the quality of extracted skeletons. For instance, when the

two end points of a long edge on the propagating surface stop on the skeleton, all

points on the edge will be assumed to be skeletal points, although there may be

still spaces between them and real skeletal points. Therefore, a mesh optimization

process can be considered to extract more accurate medial axes.

In addition, the approximating techniques to calculate the differential prop-

erties of the boundary surface sometimes are not accurate enough for extremely

irregular meshes. On the other hand, there are techniques available to provide

regular parametrization for irregular polygonal meshes. The differential calcula-

tion will be much easier under such parametrization. Thus, mesh parametrization
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techniques can also be applied to the diffusion-based model for better results.

A better algorithm to detect the skeletal points during the progressive medial

axis extraction can also improve the process. The current algorithm employs a

collision detection method that simply checks collision for sampling points and

faces. Such algorithm is slow for large datasets and sensitive to the value of time

intervals for the diffusion process. Faster and more accurate skeletal point detec-

tion techniques such as singularity related methods can be considered to speed up

the medial axis extraction process and make this model more applicable for large

models.

9.3 Direct Sculpting Environment of Implicit PDEs

9.3.1 Overview

Figure 9.6: System interface for the implicit PDE module.
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This dissertation also provides a modeling framework for design, reconstruc-

tion, blending, and manipulation of implicit PDE objects. Fig. 9.6 shows a snap-

shot of the system while manipulating a selected sketch curve for the implicit

PDE model. The implicit PDE module can be turned on by selecting Implicit

Models under the ”Model” in the menu bar. The sculpting toolkits are under the

”3D Implicit Model”. To reduce the burden of selecting menu items during the

sculpting process, the manipulation tools are associated with a set of toolbars.

The functions of the toolbars include object rotation along X, Y, Z directions,

Marching-Cube triangulation and view, initialization of sketch curves, input of

scattered data point sets, initial guess via the RBF method and fast-tagging al-

gorithm, iso-surface view, histogram graph, sketch curve sculpting, selection of

regions of interests, etc. The left window in the interface is the 3D view window

for implicit PDE objects, which offers wireframe and shaded view of iso-surface

at selected intensity value, as well as discretized grid view of particular inten-

sities. The display window on the upper right can be switched between X-Y

view to modify sketch curves and 2D cutting-plane along coordinate directions

for iso-contour sculpting of implicit objects. The window on the lower right can

be switched between X-Z view to sculpt sketch curves and Histogram display of

the entire working space for the implicit PDE module.

The system architecture of implicit PDE module is shown in Fig. 9.7.

9.3.2 Implicit PDE Modeling Toolkits

The implicit PDE module permits users to reconstruct geometric shapes de-

fined by PDE-based implicit functions from a set of sketch curves, scattered data
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Figure 9.7: System architecture for implicit PDE module.

points, or volumetric datasets. The system also allows direct manipulation of re-

constructed implicit PDE objects with various intensity constraints in the volumet-

ric working space. The direct sculpting of implicit PDE objects can be obtained

via modification of pre-defined conditions and interior operations. Fig. 9.7 illus-

trates the architecture of the implicit PDE module of the PDE-based modeling

system. In particular, the module provides the following functionalities:

Missing Information Recovery and Shape Blending. The underlying im-

plicit PDEs of the PDE modeling system provide a simple yet systematic mech-

anism to obtain the volumetric information satisfying specified constraints auto-

matically. Such an advantage allows the PDE modeling system to recover the
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missing information of input datasets. It can also be used to compute connecting

parts between different objects in the working space which leads to shape blend-

ing.

Shape Reconstruction. Users can interactively input and edit scattered data

points or sketch curves with specified intensity values, then the system uses the

RBF method or distance field approximation to calculate intensity values on the

sampling grids within the volumetric working space as an initial guess for the

iterative solver of the discretized implicit PDE to obtain an approximate solution

for implicit PDE objects satisfying these conditions. The system can model both

closed and open implicit shapes.

Discrete Models. The PDE modeling system supports implicit PDE objects

obtained from solving the elliptic PDEs using: (1) finite-difference discretization

for the numerical solution of the fourth-order and second-order elliptic PDEs in

3D working space; and (2) RBF approximation at arbitrary sub-regions in the

working space for modeling localized details and performance speedup.

Interactive and Direct Operations. Users can also work directly on the im-

plicit PDE objects through: (1) local modification of blending coefficient func-

tions; (2) sketch curve sculpting using B-spline manipulation; (3) gradient spec-

ification of selected curves; (4) local RBF approximation for improved time per-

formance and interactive CSG manipulation; (5) interior deformation with ad-

ditional constraints inside the working space; (6) iso-surface manipulation and

direct sculpting of iso-contours at selected intensity values; and (7) gradient and

curvature constraints inside the working space.
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9.3.3 System Performance and Discussion

Iterative methods (e.g. Gauss-Seidel iteration) with multi-grid techniques are

employed to solve the implicit PDEs subject to various constraints. Besides orig-

inal datasets or predefined sketch curves, the implicit PDE module allows users

to interactively define and sculpt sketch curves directly and specify gradient di-

rections at selected curves. These constraints provide more freedom to designers

and make intuitive design of implicit objects more cost-effective. Users can also

enforce additional constraints directly inside the volumetric working space by ap-

plying local operations and sculpting toolkits for implicit objects. For implicit

PDE models, first the RBF method or fast-tagging algorithm are used to get an

initial guess of intensity distribution for the entire implicit space, then iterative

methods based on finite-difference approximations are performed to get solutions

with additional constraints. The initial guess can be stored to save time for further

manipulations.

Examples Constraints Initial 2nd(s) 4th(s)

Fig. 6.2 169888 N/A 1.542 7.992

Fig. 6.3 274086 N/A 3.04 13.7

Fig. 6.4 (a) 180 5.889 N/A 379.766

Fig. 6.4 (g) 720 18.872 N/A 416.312

Fig. 6.6 960 30.584 N/A 425.688

Fig. 6.7 (a) 1218 267.925 N/A 113.432

Fig. 6.7 (e) 3154 359.657 N/A 148.283

Table 9.6: CPU time (in seconds) of different solvers for several examples of

implicit PDE objects with different number of constraints.
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Table 9.6 summarizes the numbers of constraints and CPU time of numer-

ical solvers for the second-order and fourth-order implicit PDE examples when

running on a Pentium 4 1.4GHz PC. The resolution of the working space is

64×64×64 for Fig. 6.2 and 65×65×65 for other examples. The stopping thresh-

old (difference between two iteration steps) is 10−9. ”Initial” stands for the initial

guess where we use the RBF method for sketch curve datasets and the fast-tagging

approximation for the scattered data points input. ”2nd(s)” and ”4th(s)” indicate

the CPU time in seconds for solving the entire implicit second-order and fourth-

order PDE working spaces based on initial guesses using multi-grid Gauss-Seidel

iteration. The time performance of the RBF and fast-tagging algorithms depends

on the number of enforced constraints, while convergent speeds of iterative meth-

ods are mainly determined by the sampling rates of the implicit working space.

Although the initialization of implicit models is time-consuming because of

the approximation of the entire working space, the local sculpting afterward will

be interactive because only small number of sampling grids are involved. Table

Examples Constraints Grids 4th(s)

Iso-contour Editing(Fig.6.8c) 8 1792 0.45

Region Deformation(Fig.6.8d) 507 6358 3.17

CSG-like Blending(Fig.6.8f) 108 1000 1.15

Sharp-feature Creation(Fig.6.8g) 98 5046 0.23

Cutting-1(Fig.6.8h) 216 1000 0.82

Cutting-2(Fig.6.8i) 216 1000 0.82

Gradient Sculpting(Fig.6.10) 7 294 0.09

Curvature Manipulation(Fig.6.11) 7 294 0.09

Table 9.7: CPU time (seconds) of local direct manipulation examples of implicit

PDE objects.
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9.7 summarizes the CPU time for direct sculpting examples in local selected re-

gions. ”Constraints” stands for the number of constraints involved for the oper-

ation, ”Grids” represents the number of grid points in the selected region, and

”4th(s)” gives the CPU time (seconds) for updating the intensity values in the se-

lected area using the fourth-order PDE. The CPU time depends on the scale of

intensity changes by the sculpting operation as well as the number of constraints

and the size of the selected region. For instance, CSG operations usually enforce

relatively larger intensity changes for constraints in selected regions than other

operations such as gradient and curvature sculpting, hence they need more CPU

time to update the region’s intensity distribution.

9.4 PDE-based Free-Form Modeling and Deforma-

tion Structure and Results

9.4.1 Overview

The PDE-based free-form modeling and deformation module offers free-form

PDE-based shape design, sculpting, blending, and deformation from geometric

boundary surfaces or curve network and intensity attributes with direct manipula-

tion toolkits. Fig. 9.8 shows a snapshot of the system interface while modeling a

polygonal mesh object as an embedded dataset inside a PDE solid obtained from a

set of boundary curves. The modeling toolkits are provided under ”Solid Model”

in the menu bar of the system. The dialog of ”Fix Regions” provides the specifi-

cation of the sculpting tools for PDE solids. The left display window shows the

PDE solids with embedded datasets, which can be displayed in wireframe, shaded

model, and discretized grids. It can also show intensity distributions when they are
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Figure 9.8: System interface for the PDE-based free-form modeling and deforma-

tion module.

available. The two right windows are for manipulations of boundary conditions

of PDE solids.

The PDE-based free-form modeling and deformation module provides users

interactive manipulations of free-form PDE solids with various local/global con-

straints and intensity properties and allows interactive sculpting of PDE solids via

boundary conditions and interior operations. Fig. 9.9 illustrates its architecture

outline.

9.4.2 PDE Solid Modeling Toolkits

The PDE modeling system offers a set of direct manipulation toolkits for the

PDE-based free-form deformation and modeling.

Geometric Boundary Representations. Users can interactively input and

edit boundary surfaces or boundary curves by selecting the boundary of interests,
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Figure 9.9: System architecture of the PDE-based free-form modeling and defor-

mation module.

and obtain PDE solids satisfying these conditions. Moreover, the system offers

a multi-grid subdivision scheme to improve time performance of iterative tech-

niques.

Dynamic Models. The system supports physics-based PDE solids using nu-

merical techniques including: (1) finite-difference discretization using mass-spring

models; (2) multi-grid subdivision for model refinement and performance speedup.

Material properties and dynamic behavior greatly enhance interactivities while

manipulating conventional PDE solids.

Boundary Constraint Manipulations. Users can use various manipulation

toolkits to deform boundary surfaces including: (1) editing points and their normal
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and curvature at arbitrary locations; (2)enforcing a set of curve constraints; (3)

deforming user-specified regions; and (4) applying local operations only in user-

selected areas.

Geometric Interior Operations. In addition, users can also work directly in-

side the PDE solid through: (1) interior deformation with additional constraints

inside the solid; (2) trimming specified regions for complex geometry and arbi-

trary topology; and (3) modifying control functions as well as material properties

such as mass, damping, and stiffness distributions locally. Regions of interests

can be selected through the ”Fix Regions” function on interface.

Free-Form Deformation Based on Intensity Fields. In order to offer users

more degrees of freedom for shape manipulation based on PDE techniques, this

dissertation integrates scalar intensity properties with PDE solid geometry for ar-

bitrary shape modeling. (1) The system allows users to model the implicit PDE

shape through geometric free-form deformation and direct manipulation; (2) the

system provides free-form shape blending features by integrating geometric and

intensity properties in the working space; and (3) users can also obtain deformed

shape by changing the intensity distribution globally/locally in the PDE solid

working space.

9.4.3 Performance

Because of the finite-difference discretization, the system can model the entire

3D parametric PDE space through direct sculpting, which offers PDE-based free-

form modeling and deformation for embedded objects inside the 3D parametric

domain. Table 9.8 details the time performance of some PDE solid geometry

examples.

In Table 9.8, ”Gauss-Seidel” stands for Gauss-Seidel iteration and ”SOR”
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Model Gauss-Seidel SOR

Sphere-4 304.029 257.790

Sphere-2 19.989 16.404

Sphere-s 31.436 28.626

Cylinder-4 388.642 369.157

Cylinder-2 39.471 34.078

Cylinder-s 143.256 122.375

Table 9.8: CPU time (in seconds) for PDE solid examples using different solvers.

means Successive Over-Relaxation technique. ”Sphere” represents the PDE solid

obtained from boundary surfaces in Fig. 7.2 (a) and (b). ”Cylinder” stands for the

cylinder-like PDE solid obtained from boundary curve network in Fig. 7.3 (a) and

(b). The ”-4”, ”-2” and ”-s” stand for the 4th, 2nd order PDE, and the 4th order

PDE with subdivision, respectively.

Besides traditional boundary conditions of PDE techniques, the system allows

users to specify and enforce a large variety of additional constraints on a set of

points, cross-sectional curves, and surface areas on the geometric boundary sur-

faces. These constraints provide more freedom to designers, making the design

process of PDE solids more cost-effective. The curve-based boundary conditions

make it even easier for designers to achieve the desired shape of the PDE solid.

Users can also enforce additional constraints directly inside the PDE solid and ap-

ply trimming and free-form operations, which facilitate the construction of PDE

solids of arbitrary topology. The prototype system uses finite-difference tech-

niques because they are simple, easy to implement, and suitable for the incorpora-

tion of complicated, flexible constraints. In general, the time and space complexity

will increase with higher resolution as well as increased accuracy. The multi-grid
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subdivision method for various levels of refinement achieves anticipated results

in the experiments. The free-form modeling and deformation based on PDE solid

geometry and intensity distributions provide arbitrary shape blending and modifi-

cation functionalities for the PDE-based modeling system.

Despite the direct and powerful modeling advantages of the PDE framework,

the major difficulty associated with the proposed PDE techniques is the convergent

speed of finite-difference approximation. Thus, faster numerical approximation

techniques for solving PDEs may be considered to improve the time performance

of the PDE-based modeling system.



Chapter 10

Conclusion

This dissertation presents a novel PDE-based modeling and interactive sculpt-

ing system that offers geometric representations with physical and material prop-

erties and a set of modeling/deformation toolkits as solutions of certain PDEs

under boundary and initial conditions associated with additional constraints. The

system is governed by PDEs and users can model objects without worrying about

the underlying mathematical details. The PDE formulation can recover the en-

tire shape information from partial input and alleviate the burden of specifica-

tion of various control information for designers. Several currently popular and

efficient modeling techniques, such as parametric representations, implicit func-

tions, physics-based modeling, and PDE techniques, are integrated into a single

framework to design smooth parametric or implicit geometric entities from gener-

alized boundary constraints, manipulate displacements models for parametric or

polygonal surfaces, extract medial axis/skeleton structures of objects bounded by

polygonal meshes, deform shapes based on skeleton manipulations and diffusion-

based propagation, reconstruct objects from partial information by sketching a

set of arbitrary non-isoparametric curves or unorganized scattered data points,

196
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smoothly blend implicit objects, and offer physics-based interactive and direct

manipulation toolkits for geometric models, such as free-form deformation and

shape blending, global and local sculpting, physical and material property modifi-

cation, etc. With these modeling features, the PDE-based modeling system offers

a generalized PDE modeling mechanism which covers popular applications in

geometric modeling, including dynamic physics-based surface and displacement

sculpting of arbitrary topology, medial axis extraction for model simplification,

skeleton-based shape manipulation using diffusion-based front propagation mod-

els, implicit shape reconstruction and deformation, damaged data recovery, arbi-

trary shape blending, and PDE-based free-form solid modeling and deformation

with intensity and physical properties. The system offers modeling functionalities

for geometric objects of various types of representations, including parametric

surfaces, arbitrary polygonal meshes, free-form solids, implicit models, as well

as volumetric data. It also provides data exchange among these types of formats.

It also provides a comprehensive set of direct and interactive manipulation toolk-

its for common users including point-based editing, region sculpting, curve and

region mapping, normal constraints, curvature manipulation, displacement mod-

eling, intensity and material modifications, etc. These toolkits provide users more

degrees of freedom to model geometric shapes than previous techniques. This dis-

sertation employs several simple but efficient numerical techniques such as finite-

difference method with multi-grid iterative techniques, SOR relaxation methods,

and least-square fitting techniques to solve the elliptic PDEs and diffusion equa-

tions with additional and general constraints. These techniques provide a powerful

and intriguing framework using the PDE techniques for general geometric simu-

lation and interactive modeling.
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10.1 Future Work

As for future work, I will continue to explore applications using PDE tech-

niques in visual computing areas such as geometric modeling, visualization, im-

age processing, simulation, animation, etc.

• Sweeping objects design: the front propagation techniques allow objects to

grow from skeletons and propagate along certain specific directions. This

will provide a method to generate sweeping objects and can be used for

sweeping shape design.

• Implicit shape morphing: source and target objects for shape transforma-

tion can be embedded into the implicit working space by setting different

intensity values respectively and using implicit PDEs to compute the tran-

sition of intensity values from the source to the target. Implicit PDEs offer

high-order continuity of intensity distribution over the entire working space,

which will provide a smooth transformation between shapes.

• Data reconstruction and recovery: the implicit PDE model can model volu-

metric datasets obtained from 3D scan devices. It can reconstruct embedded

objects from volumetric datasets for further analysis. Because the underly-

ing PDE can recover domain shape information through partial input, it can

be used for damaged data recovery when only partial information of objects

is available.

• Image Processing and Medical Imaging: PDE techniques are popular in

image processing areas. I want to further employ PDEs in image process-

ing especially medical imaging applications. I consider to use diffusion

equations for feature enhancement and noise removal to improve image
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qualities at the same time. I also want to explore applications of implicit

PDEs in image morphing, which then can be used for image analysis and

animation. Moreover, because PDEs can reconstruct information of entire

space from partial input, they are ideal candidates for model recovery from

cross-sectional slicing images, which is extremely useful for medical data

reconstruction. This can be considered as another possible future focus in

my research.

• Simulation and Animation: because most of the natural phenomena can

be formulated using differential equations, PDE techniques such as time-

dependent wave equations are among commonly used methods for natural

phenomena simulation such as water, smoke, fire, etc. Their applications

include simulating natural scenes and creating visual realistic scenes in ani-

mation and movie production. Because there are various types of PDEs that

are possible candidates for simulation and animation, another direction of

my future research will focus on employing different types of PDEs in nat-

ural scene simulation and animation. My work will aim at using PDE tech-

niques to produce more realistic and accurate results with better time per-

formance than previous PDE-based techniques, which are normally solved

by numerical approximations.



Bibliography

[1] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating

interfaces. Journal of Computational Physics, 118:269–277, 1995.

[2] N. Amenta, S. Choi, and R. K. Kolluri. The power crust. In Proceedings

of the Sixth ACM Symposium on Solid Modeling and Applications, pages

249–266. ACM Press, 2001.

[3] C. Arcelli and G. S. di Baja. A width-independent fast thinning algo-

rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,

7(4):463–474, 1985.

[4] C. Arcelli and G. S. di Baja. Ridge points in euclidean distance maps.

Pattern Recognition Letters, 13(4):237–243, 1992.

[5] A. Bærentzen and N. J. Christensen. Volume sculpting using level-set

method. In Proceedings of International Conference on Shape Modeling

and Applications 2002, pages 175–182, Banff, Canada, 2002.

[6] D. Baraff and A. Witkin. Large steps in cloth simulation. In SIGGRAPH

1998, pages 43–54, Orlando, USA, 1998.

[7] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting.

In SIGGRAPH 2000, pages 417–424, New Orleans, USA, 2000.

200



BIBLIOGRAPHY 201

[8] I. Bitter, A. Kaufman, and M. Sato. Penalized-distance volumetric skeleton

algorithm. IEEE Transactions on Visualization and Computer Graphics,

7(3):195–206, 2001.

[9] J. Bloomenthal, C. Bajaj, J. Blinn, M.-P. Cani-Gascuel, A. Rockwood,

B. Wyvill, and G. Wyvill. Introduction to Implicit Surfaces. Morgan Kauf-

mann, 1997.

[10] J. Bloomenthal and C. Lim. Skeletal methods of shape manipulation. In

Proceedings of International Conference on Shape Modeling and Applica-

tions 1999, pages 44–47, Aizu-Wakamatsu, Japan, 1999.

[11] J. Bloomenthal and B. Wyvill. Interactive techniques for implicit modeling.

Computer Graphics, 24(2):109–116, 1990.

[12] M. I. G. Bloor and M. J. Wilson. Blend design as a boundary-value prob-

lem. In Geometric Modeling: Theory and Practice, pages 221–234, I.W.

Straßer (ed), Springer-Verlag, 1989.

[13] M. I. G. Bloor and M. J. Wilson. Generating blend surfaces using partial

differential equations. Computer-Aided Design, 21(3):165–171, 1989.

[14] M. I. G. Bloor and M. J. Wilson. Representing PDE surfaces in terms of

B-splines. Computer-Aided Design, 22(6):324–331, 1990.

[15] M. I. G. Bloor and M. J. Wilson. Using partial differential equations to gen-

erate free-form surfaces. Computer-Aided Design, 22(4):202–212, 1990.

[16] M. I. G. Bloor and M. J. Wilson. Functionality in solids obtained from

partial differential equations. Computing Suppl. 8, pages 21–42, 1993.



BIBLIOGRAPHY 202

[17] M. I. G. Bloor and M. J. Wilson. Spectral approximations to PDE surfaces.

Computer-Aided Design, 28(2):145–152, 1996.

[18] H. Blum. A transformation for extracting new descriptions of shape. In

Models for the Perception of Speech and Visual Form, pages 362–380,

1967.

[19] H. Blum. Biological shape and visual science. Journal of Theoretical Bi-

ology, 38:205–287, 1973.

[20] W. Bohm, G. Farin, and J. Kahmann. A survey of curve and surface meth-

ods in CAGD. Computer Aided Geometric Design, 1(1):1–60, 1984.

[21] S. Bouix and K. Siddiqi. Divergence-based medial surfaces. In Proceedings

of Sixth European Conference on Computer Vision (ECCV 2000), pages

603–618, Dublin, Ireland, 2000.

[22] D. Breen, R. Fedkiw, S. Osher, G. Sapiro, and R. Whitaker. Level Set and

PDE Methods for Computer Graphics. SIGGRAPH 2002 Course Notes

10, 2002.

[23] D. Breen and R. Whitaker. A level-set approach for the metamorphosis of

solid models. IEEE Transactions on Visualization and Computer Graphics,

7(2):173–192, 2001.

[24] M. Carignan, Y. Yang, N. M. Thalmann, and D. Thalmann. Dressing an-

imated synthetic actors with complex deformable clothes. In SIGGRAPH

1992, pages 99–104, Chicago, USA, 1992.

[25] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, and B. McCallum.

Reconstruction and representation of 3D objects with radial basis functions.

In SIGGRAPH 2001, pages 67–76, Los Angeles, USA, 2001.



BIBLIOGRAPHY 203

[26] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbi-

trary topological meshes. Computer-Aided Design, 10(6):350–355, 1978.

[27] G. Celniker and D. Gossard. Deformable curve and surface finite elements

for free-form shape design. Computer Graphics, 25(4):165–170, 1991.

[28] G. Chaikin. An algorithm for high speed curve generation. Computer

Graphics and Image Processing, 3:346–349, 1974.

[29] D. Cohen-Or and D. Levin. Three-dimensional distance field metamorpho-

sis. ACM Transactions on Graphics, 17(2):116–141, 1998.

[30] R. Cook. Shade trees. Computer Graphics (Proceedings of SIGGRAPH

1984), 18(3):223–231, 1984.

[31] S. Coquillart. Extended free-form deformation: A sculpting tool for 3D

geometric modeling. In SIGGRAPH 1990, pages 187–196, Dallas, USA,

1990.

[32] B. Crespin. Implicit free-form deformations. In Proceedings of Implicit

Surfaces 1999, page 1723, Bordeaux, France, 1999.

[33] B. Cutler, J. Dorsey, L. McMillan, M. Müller, and R. Jagnow. A procedural

approach to authoring solid models. In SIGGRAPH 2002, pages 302–311,

San Antonio, USA, 2002. ACM Press.

[34] F. Dachille, H. Qin, A. Kaufman, and J. El-Sana. Haptic sculpting of dy-

namic surfaces. In Proceedings of 1999 ACM Symposium on Interactive

3D Graphics, pages 103–110, Atlanta, USA, 1999.

[35] C. de Boor. A Practical Guide to Splines. Springer, 1978.



BIBLIOGRAPHY 204

[36] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character

animation. In SIGGRAPH 1998, pages 85–94, Orlando, USA, 1998.

[37] M. Desbrun and M.-P. Cani-Gascuel. Active implicit surfaces for anima-

tion. In Proceedings of Graphics Interface 1998, pages 143–150, 1998.
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